
User's Guide to the Community
Atmosphere Model CAM-5.3

User's Guide to the Community Atmosphere Model CAM-5.3

Publication date This document was last updated on 2015-05-08 15:21:14.

iii

Table of Contents
Acknowledgments ... v
1. Introduction .. 1

Changes from previous release .. 1
Getting Help -- Other User Resources .. 2

The CAM Web Page ... 2
The CESM Bulletin Board .. 2
Reporting bugs ... 2

2. Building and Running CAM .. 3
Sample Interactive Session ... 4

Configuring CAM for serial execution .. 4
Specifying the Fortran compiler ... 5
Dealing with compiler wrappers .. 7
Configuring CAM for parallel execution ... 7
Building CAM .. 9
Building the Namelist .. 9
Acquiring Input Datasets .. 12
Running CAM .. 13

Sample Run Scripts ... 13
3. Input datasets .. 14

SST and Sea Ice Boundary Files .. 14
4. Model Output .. 16

Model History Files ... 16
General Features of History Files ... 16
Default History Fields and Master Field Lists ... 18

5. Physics modifications via the namelist ... 20
Radiative Constituents .. 20

Default rad_climate for cam4 physics .. 20
Default rad_climate for cam5 physics .. 21
Diagnostic radiative forcing ... 24

A. The configure utility ... 26
How configure is called from the CESM scripts ... 26
Arguments to configure ... 26

CAM configuration .. 27
SCAM configuration .. 29
CAM parallelization ... 29
CAM parallelization when running standalone with CICE ... 29
General options ... 30
Surface components ... 31
CAM standalone build .. 31

Environment variables recognized by configure ... 33
B. The build-namelist utility .. 34

Options to build-namelist ... 35
Environment variables used by build-namelist ... 36
CAM Namelist variables ... 37

References .. 38

iv

List of Examples
2.1. Use build-namelist to specify a dataset in a non-default location. .. 12
2.2. Acquire missing dataset .. 12
4.1. Timestamps for a year of monthly averages ... 17
4.2. Timestamps for five daily averages .. 18
5.1. Modify a radiatively active gas .. 23
5.2. Aerosol radiative forcing .. 24
5.3. Black carbon radiative forcing ... 25

v

Acknowledgments
We wish to acknowledge members of NCAR's Atmospheric Modeling and Predictability Section (AMP),
CESM Software Engineering Group (CSEG), and Computation and Information Systems Laboratory
(CISL) for their contributions to the development of CAM-5.3.

The new model would not exist without the significant input from members of the CESM Atmospheric
Model Working Group (AMWG) too numerous to mention. Rich Neale (NCAR), Minghua Zhang
(SUNY), Mark Taylor (SNL) and Leo Donner (GFDL), were co-chairs of the AMWG during part or all
of the development of CAM-5.3.

We would like to acknowledge the substantial contributions to the CAM effort from the National Science
Foundation, the Department of Energy, the National Oceanic and Atmospheric Administration, and the
National Aeronautics and Space Administration.

1

Chapter 1. Introduction
The Community Atmosphere Model version CAM-5.3 is released as the atmosphere component of the
Community Earth System Model version CESM-1.2. It is the latest in a series of global atmosphere models
whose development is guided by the Atmosphere Model Working Group [/working_groups/Atmosphere/]
(AMWG) of the Community Earth System Model [/models/cesm1.2/] (CESM) project. CAM is used as
both a standalone model and as the atmospheric component of the CESM. CAM has a long history of use
as a standalone model by which we mean that the atmosphere is coupled to an active land model (CLM),
a thermodynamic only sea ice model (a special configuration of CICE), and a data ocean model (DOCN).
When one speaks of "doing CAM simulations" the implication is that it's a standalone configuration that is
being used. When CAM is coupled to active ocean and sea ice models then we refer to the model as CESM.

CAM provides a framework for running the "Whole Atmosphere" configurations; WACCM, and
WACCM-X. To run CAM in a WACCM or WACCM-X configuration the user is referred to the
CESM-1.2 User's Guide [/models/cesm1.2/cesm/doc/usersguide/book1.html].

In versions of CAM before 4.0 the driver for the standalone configuration was completely separate code
from what was used to couple the components of the CCSM. One of the most significant software changes
in CAM-4.0 was a refactoring of how the land, ocean, and sea ice components are called which enabled
the use of the CCSM coupler to act as the CAM standalone driver (this also depended on the complete
rewritting of the CCSM coupler to support sequential execution of the components). Hence, for the CESM1
model, just as for CCSM4 before it, it is accurate to say that a CAM standalone configuration is nothing
more than a special configuration of CESM in which the active ocean and sea ice components are replaced
by data ocean and thermodynamic sea ice components.

Since the CAM standalone model is just a special configuration of CESM it can be run using the CESM
scripts. This is done by using one of the "F" compsets and is described in the CESM-1.2 User's Guide [/
models/cesm1.2/cesm/doc/usersguide/book1.html]. The main advantage of running CAM via the CESM
scripts is to leverage the high level of support that those scripts provide for doing production runs of
predefined experiments on supported platforms. The CESM scripts do things like: setting up reasonable
runtime environments; automatically retrieving required input datasets from an SVN server; and archiving
output files. But CAM is used in a lot of environments where the complexity of production ready scripts
is not necessary. In these instances the flexibility and simplicity of being able to completely describe a run
using a short shell script is a valuable option. In either case though, the ability to customize a CAM build
or runtime configuration depends on being able to use the utilities described in this document. Any build
configuration can be set up via appropriate commandline arguments to CAM's configure utility, and any
runtime configuration can be set up with appropriate arguments to CAM's build-namelist utility. Issues
that are specific to running CAM from the CESM scripts will not be discussed in this guide. Rather we
focus on issues that are independent of which scripts are used to run CAM, although there is some attention
given in this guide to the construction of simple scripts designed for running CAM in its standalone mode.

Changes from previous release
This information is available from the CESM-1.2 home page [/models/cesm1.2/].

• New science features in CAM-5.3 [/models/cesm1.2/tags/cesm1_2/whatsnew_science.html].

• New software features in CAM-5.3 [/models/cesm1.2/tags/cesm1_2/whatsnew_software.html].

• Summary of answer changes [/models/cesm1.2/tags/cesm1_2/answerchanges.html].

• Known problems [/models/cesm1.2/tags/cesm1_2/knownproblems.html].

/working_groups/Atmosphere/
/working_groups/Atmosphere/
/models/cesm1.2/
/models/cesm1.2/
/models/cesm1.2/cesm/doc/usersguide/book1.html
/models/cesm1.2/cesm/doc/usersguide/book1.html
/models/cesm1.2/cesm/doc/usersguide/book1.html
/models/cesm1.2/cesm/doc/usersguide/book1.html
/models/cesm1.2/cesm/doc/usersguide/book1.html
/models/cesm1.2/
/models/cesm1.2/
/models/cesm1.2/tags/cesm1_2/whatsnew_science.html
/models/cesm1.2/tags/cesm1_2/whatsnew_science.html
/models/cesm1.2/tags/cesm1_2/whatsnew_software.html
/models/cesm1.2/tags/cesm1_2/whatsnew_software.html
/models/cesm1.2/tags/cesm1_2/answerchanges.html
/models/cesm1.2/tags/cesm1_2/answerchanges.html
/models/cesm1.2/tags/cesm1_2/knownproblems.html
/models/cesm1.2/tags/cesm1_2/knownproblems.html

Introduction

2

Getting Help -- Other User Resources

The CAM Web Page
The central source for information on CAM is the CAM web page [/models/cesm1.2/cam].

The CESM Bulletin Board
The CESM Bulletin Board is a moderated forum for rapid exchange of information, ideas, and topics
of interest relating to all components of the CESM. This includes sharing software tools, datasets,
programming tips and examples, as well as discussions of questions, problems and workarounds. The
primary motivation for the establishment of this forum is to facilitate and encourage communication
between the users of the CESM around the world. This bulletin board will also be used to distribute
announcements related to CESM.

The CESM Bulletin Board is here: http://bb.cgd.ucar.edu/.

Reporting bugs
If a user should encounter bugs in the code (i.e., it doesn't behave in a way in which the documentation
says it should), the problem should be reported electronically to the CESM Bulletin Board [http://
bb.cgd.ucar.edu/]. When writing a bug report the guiding principle should be to provide enough
information so that the bug can be reproduced. The following list suggests the minimal information that
should be contained in the report:

1. The version number of the CCSM or CESM release that CAM is part of.

2. The architecture on which the code was built. Include relevent information such as the Fortran compiler,
MPI library, etc.

3. The configure commandline. If it is this command that is failing, then report the output from this
command. It can also be very useful to run this command with the -v option to turn on verbose output.

4. The build-namelist commandline. If it is this command that is failing, then report the output from this
command. It can also be very useful to run this command with the -v option to turn on verbose output.

5. Model printout. Ideally this would contain a stack trace. But it should at least contain any error messages
printed to the output log.

Please note that CAM is a research tool, and not all features contained in the code base are supported.

/models/cesm1.2/cam
/models/cesm1.2/cam
http://bb.cgd.ucar.edu/
http://bb.cgd.ucar.edu/
http://bb.cgd.ucar.edu/
http://bb.cgd.ucar.edu/

3

Chapter 2. Building and Running CAM
This chapter describes how to build and run CAM in its standalone configuration. We do not provide scripts
that are setup to work out of the box on a particular set of platforms. If you would like this level of support
then consider running CAM from the CESM scripts (see CESM-1.2 User's Guide [/models/cesm1.2/cesm/
doc/usersguide/book1.html]). We do however provide some examples of simple run scripts which should
provide a useful starting point for writing your own scripts (see the section called “Sample Run Scripts”).

In order to build and run CAM the following are required:

• The source tree. CAM-5.3 is distributed with CESM-1.2. To obtain the source code go to the section
"Acquiring the Code" on the CESM Home Page [/models/cesm1.2/index.html]. When we refer to the
root of the CAM source tree, this is the same directory as the root of the CESM source tree. This directory
is referred to throughout this document as $CAM_ROOT.

• Perl (version 5.4 or later).

• A GNU version of the make utility.

• Fortran and C compilers. The Fortran compiler needs to support at least the Fortran95 standard.

• A NetCDF library (version 4.1.3 or later) that has the Fortran APIs built using the same Fortran
compiler that is used to build the rest of the CAM code. This library is used extensively by CAM
both to read input datasets and to write the output datasets. The NetCDF source code is available
here [http://www.unidata.ucar.edu/downloads/netcdf/]. We have updated the required NetCDF library
version from 3.6 to 4.1.3 due to a recently discovered bug which affects all previous versions of the
NetCDF library. The bug only occurs in special circumstances that are not that easy to replicate, however
the result is that corrupt files are silently created. A more complete description of the bug is here [https://
www.unidata.ucar.edu/jira/browse/NCF-22].

• Input datasets. The required datasets depend on the CAM configuration. Determining which datasets
are required for any configuration is discussed in the section called “Building the Namelist”. Acquiring
those datasets is discussed in the section called “Acquiring Input Datasets”.

To build CAM for SPMD execution it will also be necessary to have an MPI library (version 1 or later).
As with the NetCDF library, the Fortran API should be build using the same Fortran compiler that is
used to build the rest of CAM. Otherwise linking to the library may encounter difficulties, usually due to
inconsistencies in Fortran name mangling.

Building and running CAM takes place in the following steps:

1. Configure model

2. Build model

3. Build namelist

4. Execute model

Configure model. This step is accomplished by running the configure utility to set the compile-time
parameters such as the dynamical core (Eulerian Spectral, Semi-Lagrangian Spectral, Finite Volume, or
Spectral Element), horizontal grid resolution, and the type of parallelism to employ (shared-memory and/
or distributed memory). The configure utility is discussed in Appendix A, The configure utility.

Build model. This step includes compiling and linking the executable using the GNU make command
(gmake). configure creates a Makefile in the directory where the build is to take place. The user then need
only change to this directory and execute the gmake command.

/models/cesm1.2/cesm/doc/usersguide/book1.html
/models/cesm1.2/cesm/doc/usersguide/book1.html
/models/cesm1.2/cesm/doc/usersguide/book1.html
/models/cesm1.2/index.html
/models/cesm1.2/index.html
http://www.unidata.ucar.edu/downloads/netcdf/
http://www.unidata.ucar.edu/downloads/netcdf/
https://www.unidata.ucar.edu/jira/browse/NCF-22
https://www.unidata.ucar.edu/jira/browse/NCF-22
https://www.unidata.ucar.edu/jira/browse/NCF-22

Building and Running CAM

4

Build namelist. This step is accomplished by running the build-namelist utility, which supports a
variety of options to control the run-time behavior of the model. Any namelist variable recognized by
CAM can be changed by the user via the build-namelist interface. There is also a high level "use case"
functionality which makes it easy for the user to specify a consistent set of namelist variable settings for
running particular types of experiments. The build-namelist utility is discussed in Appendix B, The build-
namelist utility.

Execute model. This step includes the actual invocation of the executable. When running using
distributed memory parallelism this step requires knowledge of how your machine invokes (or "launches")
MPI executables. When running with shared-memory parallelism (using OpenMP) you may also set the
number of OpenMP threads. On most HPC platforms access to the compute resource is through a batch
queue system. The sample run scripts discussed in the section called “Sample Run Scripts” show how to
set the batch queue resources on several HPC platforms.

Sample Interactive Session
The following sections present an interactive C shell session to build and run a default version of CAM.
Most often these steps will be encapsulated in shell scripts. An important advantage of using a script is
that it acts to document the run you've done. Knowing the source code tree, and the configure and build-
namelist commands provides all the information needed to replicate a run.

For the interactive session the shell variable camcfg is set to the directory in the source tree that contains
the CAM configure and build-namelist utilities ($CAM_ROOT/models/atm/cam/bld).

Much of the example code in this document is set off in sections like this.
Many examples refer to files in the distribution source tree using
filepaths that are relative to distribution root directory, which we
denote, using a UNIX shell syntax, by $CAM_ROOT. The notation indicates
that CAM_ROOT is a shell variable that contains the filepath. This could
just as accurately be referred to as $CCSMROOT since the root directory of
the CESM distribution is the same as the root of the CAM distribution
which is contained within it.

Configuring CAM for serial execution
We start by changing into the directory in which the CAM executable will be built, and then setting
the environment variables INC_NETCDF and LIB_NETCDF which specify the locations of the NetCDF
include files and library. This information is required by configure in order for it to produce the
Makefile. The NetCDF library is require by all CAM builds. The directories given are just examples;
the locations of the NetCDF include files and library are system dependent. The information provided by
these environment variables could alternatively be provided via the commandline arguments -nc_inc
and -nc_lib.

NOTE: A common problem is to encounter build failures due to specifying a NetCDF library which
was built with a different Fortran compiler than the one used to build CAM. Consult your system's
documentation (or some other knowledgeable source) to find the location of the NetCDF library which
was built with the Fortran compiler you intend to use.

% cd /work/user/cam_test/bld
% setenv INC_NETCDF /usr/local/include
% setenv LIB_NETCDF /usr/local/lib

Building and Running CAM

5

Next we issue the configure command (see the example just below). The argument -dyn fv specifies
using the FV dynamical core which is the default for CAM5, but we recommend always adding the
dynamical core (dycore for short) argument to configure commands for clarity. The argument -hgrid
10x15 specifies the horizontal grid. This is the coarsest grid available for the FV dycore in CAM and is
often useful for testing purposes.

We recommend using the -test option the first time CAM is built on any machine. This will check that
the environment is properly set up so that the Fortran compiler works and can successfully link to the
NetCDF and MPI (if SPMD is enabled) libraries. Furthermore, if the configuration is for serial execution,
then the tests will include both build and run phases which may be useful in exposing run time problems
that don't show up during the build, for example when shared libraries are linked dynamically. If any tests
fail then it is useful to rerun the configure command and add the -v option which will produce verbose
output of all aspects of the configuration process including the tests. If the configuration is for an SPMD
build, then no attempt to run the tests will be made. Typically MPI runs must be submitted to a batch
queue and are not enabled from interactive sessions. Also the method of launching an MPI job is system
dependent. But the build and static linking will still be tested.

% $camcfg/configure -dyn fv -hgrid 10x15 -nospmd -nosmp -test
Issuing command to the CICE configure utility:
 $CAM_ROOT/models/ice/cice/bld/configure -hgrid 10x15 -cice_mode prescribed \
 -ntr_aero 0 -nx 24 -ny 19 -bsizex 6 -bsizey 19 -maxblocks 4 -decomptype blkrobin \
 -cache config_cache_cice.xml -cachedir /work/user/cam_test/bld
CICE configure done.
MCT configure is done.
creating /work/user/cam_test/bld/Filepath
creating /work/user/cam_test/bld/Makefile
creating /work/user/cam_test/bld/config.h
creating /work/user/cam_test/bld/config_cache.xml
Looking for a valid GNU make... using gmake
Testing for Fortran 90 compatible compiler... using pgf95
Test linking to NetCDF library... ok
CAM configure done.

The first line of output from the configure command is an echo of the system command that CAM's
configure issues to invoke the CICE configure utility. CICE's configure is responsible for setting the
values of the CPP macros that are needed to build the CICE code.

After the CICE configure is complete the MCT configure script is executed to create the Makefile for
building MCT as a separate library. There is a status line output to indicate success of that process.

The next four lines of output inform the user of the files being created by configure. All these files except
for the cache file are required to be in the CAM build directory, so it is generally easiest to be in that
directory when configure is invoked.

The output from the -test option tells us that gmake is a GNU Make on this machine; that the Fortran
compiler is pgf95; and that code compiled with the Fortran compiler can be successfully linked to the
NetCDF library. The CAM configure script is the place where the default compilers are specified. On
Linux systems the default is pgf95. Finally, since this is a serial configuration no test for linking to the
MPI library was done.

Specifying the Fortran compiler
In the previous section the configure command was issued without specifying which Fortran compiler
to use. For that to work we were depending on the CAM configure script to select a default compiler.

Building and Running CAM

6

One of the differences between the CAM standalone build and a build using the CESM scripts is that
CAM's configure provides defaults based on the operating system name (as determined by the Perl internal
variable $OSNAME), while the CESM scripts require the user to specify a specific machine (and compiler
if the machine supports more than one) as an argument to the create_newcase command.

The CAM makefile currently recognizes the following operating systems and compilers.

AIX xlf95_r, mpxlf95_r

Linux pgf95 (this is the default)

lf95

ifort

gfortran (has had minimal testing)

pathf90 (has had minimal testing)

Darwin xlf95_r, mpxlf95_r, ifort

BGL blrts_xlf95

BGP mpixlf95_r

The above list contains two IBM Blue Gene machines; BGL and BGP. The executables on these machines
are produced by cross compilation and hence the configure script is not able to determine the machine for
which the build is intented. In this case the user must supply this information to configure by using the -
target_os option with the values of either bgl or bgp.

On a Linux platform several compilers are recognized with the default being pgf95. It is assumed that the
compiler to be used is in the user's path (i.e., in one of the directories in the PATH environment variable).
If it isn't then the -test option will issue an error indicating that the compiler was not found.

Suppose for example that one would like to use the Intel compiler on a local Linux system. The CAM
makefile recognizes ifort as the name of the Intel compiler. To invoke this compiler use the -fc argument
to configure. The following example illustrates the output you get when the compiler you ask for isn't
in your PATH:

% $camcfg/configure -fc ifort -dyn fv -hgrid 10x15 -nospmd -nosmp -test
Issuing command to the CICE configure utility:
 $CAM_ROOT/models/ice/cice/bld/configure -hgrid 10x15 -cice_mode prescribed \
 -ntr_aero 0 -ntasks 1 -nthreads 1 -cache config_cache_cice.xml \
 -cachedir /work/user/cam_test/bld
CICE configure done.
FAILURE: MCT configure

In previous CAM versions this problem would be caught by the -test option, but with the addition of
MCT's configure the problem is now detected there. By default MCT will be build in a subdirectory of the
build directory named mct. That directory will contain a file, config.log, which should be examined
to track down the cause of the failure. In this case the file contains the message:

$CAM_ROOT/models/utils/mct/configure: line 3558: ifort: command not found

Building and Running CAM

7

This means that the PATH environment variable has not been correctly set. The first thing to try is to verify
the directory that contains the compiler, and then to prepend this directory name to the PATH environment
variable.

NOTE: We have made progress porting CAM to the gfortran compiler, but it is still not regularly
tested or used for production work.

Dealing with compiler wrappers

Another instance where the user needs to supply information about the Fortran compiler type to configure
is when the compiler is being invoked by a wrapper script. A common example of this is using the mpif90
command to invoke the Fortran compiler that was used to build the MPI libraries. This facilitates correct
compilation and linking with the MPI libraries without the user needing to add the required include and
library directories, or library names. The same benefit is provided by the ftn wrapper used on Cray XT
and XE systems. In the usual case that a Linux OS is being used, since the CAM makefile will not
recognize these compiler names, it will assume that the default compiler is being used, and thus will
supply compiler arguments that are appropriate for pgf90. The compilation will fail if pgf90 is not the
compiler being invoked by the wrapper script (invoking configure with the -test option is a good way
to catch this problem). The way to specify which Fortran compiler is being invoked by a wrapper script is
via the -fc_type argument to configure. This argument takes one of the values pgi, lahey, intel,
pathscale, gnu, or xlf.

CAM's configure script attempts to determine the compiler type when a compiler specific name is used.
It does so by a regular expression match against the unique part of specific compiler names (e.g., any
compiler name matching 'pgf' will be given the default type of pgi). If the default is wrong then the user
will need to manually override the default via setting the -fc_type argument.

Configuring CAM for parallel execution

Before moving on to building CAM we address configuring the executable for parallel execution. But
before talking about configuration specifics let's briefly discuss the parallel execution capabilities of CAM.

CAM makes use of both distributed memory parallelism implemented using MPI (referred to
throughout this document as SPMD [http://en.wikipedia.org/wiki/SPMD]), and shared memory
parallelism implemented using OpenMP (referred to as SMP [http://en.wikipedia.org/wiki/
Symmetric_multiprocessing]). Each of these parallel modes may be used independently of the other, or
they may be used at the same time which we refer to as "hybrid mode". When talking about the SPMD
mode we usually refer to the MPI processes as "tasks", and when talking about the SMP mode we usually
refer to the OpenMP processes as "threads". A feature of CAM which is very helpful in code development
work is that the simulation results are independent of the number of tasks and threads used.

Now consider configuring CAM to run in pure SPMD mode. Prior to the introduction of CICE as the sea
ice model SPMD was turned on using the -spmd option. But if we try that now we find the following:

% $camcfg/configure -dyn fv -hgrid 10x15 -spmd -nosmp
** ERROR: If CICE decomposition parameters are not specified, then
** -ntasks must be specified to determine a default decomposition
** for a pure MPI run. The setting was: ntasks=

A requirement of the CICE model is that its grid decomposition (which is independent of CAM's
decomposition even when the two models are using the same horizontal grid) must be specified at build
time. In order for CICE's configure to set the decomposition it needs to know how much parallelism is

http://en.wikipedia.org/wiki/SPMD
http://en.wikipedia.org/wiki/SPMD
http://en.wikipedia.org/wiki/Symmetric_multiprocessing
http://en.wikipedia.org/wiki/Symmetric_multiprocessing
http://en.wikipedia.org/wiki/Symmetric_multiprocessing

Building and Running CAM

8

going to be used. This information is provided by specifying the number of MPI tasks that the job will
use via setting the -ntasks argument.

NOTE: The default CICE decomposition can be overridden by setting it explicitly using the configure
options provided for that purpose.

When running CAM in SPMD mode the build procedure must be able to find the MPI include files and
library. The recommended method for doing this is to use scripts provided by the MPI installation to invoke
the compiler and linker. On Linux systems a common name for this script is mpif90. The CAM Makefile
does not currently use this script by default on Linux platforms, so the user must explicitly specify it on
the configure commandline using the -fc argument:

% $camcfg/configure -fc mpif90 -fc_type pgi -cc mpicc -dyn fv -hgrid 10x15 -ntasks 6 -nosmp -test
Issuing command to the CICE configure utility:
 $CAM_ROOT/models/ice/cice/bld/configure -hgrid 10x15 -cice_mode prescribed \
 -ntr_aero 0 -ntasks 6 -nthreads 1 -cache config_cache_cice.xml \
 -cachedir /work/user/cam_test/bld
CICE configure done.
MCT configure is done.
creating /work/user/cam_test/bld/Filepath
creating /work/user/cam_test/bld/Makefile
creating /work/user/cam_test/bld/config.h
creating /work/user/cam_test/bld/config_cache.xml
Looking for a valid GNU make... using gmake
Testing for Fortran 90 compatible compiler... using mpif90
Test linking to NetCDF library... ok
Test linking to MPI library... ok
CAM configure done.

Notice that the number of tasks specified to CAM's configure is passed through to the commandline that
invokes the CICE configure. Generally any number of tasks that is appropriate for CAM to use for a
particular horizontal grid will also work for CICE. But it is possible to get an error from CICE at this point
in which case either the number of tasks requested should be adjusted, or the options that set the CICE
decomposition explicitly will need to be used.

NOTE: The use of the -ntasks argument to configure implies building for SPMD. This means that
an MPI library will be required. Hence, the specification -ntasks 1 is not the same as building for serial
execution which is done via the -nospmd option and does not require a full MPI library. (Implementation
detail: when building for serial mode a special serial MPI library is used which basically provides a
complete MPI API, but doesn't do any message passing.)

Next consider configuring CAM to run in pure SMP mode. Similarly to SPMD mode, prior to the
introduction of the sea ice component CICE the SMP mode was turned on using the -smp option. But with
CAM5 that will result in the same error from CICE that we obtained above from attempting to use -spmd.
If we are going to run the CICE code in parallel, we need to specify up front how much parallelism will
be used so that the CICE configure utility can set the CPP macros that determine the grid decomposition.
We specify the amount of SMP parallelism by setting the -nthreads option as follows:

% $camcfg/configure -dyn fv -hgrid 10x15 -nospmd -nthreads 6 -test
Issuing command to the CICE configure utility:
 $CAM_ROOT/models/ice/cice/bld/configure -hgrid 10x15 -cice_mode prescribed \
 -ntr_aero 0 -ntasks 1 -nthreads 6 -cache config_cache_cice.xml \
 -cachedir /work/user/cam_test/bld

Building and Running CAM

9

CICE configure done.
...

We see that the number of threads has been passed through to the CICE configure command.

NOTE: The use of the -nthreads argument to configure implies building for SMP. This means
that the OpenMP directives will be compiled. Hence, the specification -nthreads 1 is not the same
as building for serial execution which is done via the -nosmp option and does not require a compiler
that supports OpenMP.

Finally, to configure CAM for hybrid mode, simply specify both the -ntasks and -nthreads
arguments to configure.

Building CAM

Once configure is successful, build CAM by issuing the make command:

% gmake -j2 >&! make.out

The argument -j2 is given to allow a parallel build using 2 processes. The optimal number of processes
to use depends on the compute resource available. There is a lot of available parallelism in the build
procedure, so using 16 or even 32 processes may speed things up considerably. Note however that the
build happens in shared (not distributed) memory. So specifying more processes than there are processors
in a shared memory node is generally not helpful (although the presence of hyperthreading or SMT on a
node may provide an advantage to specifying twice the number of processors).

It is useful to redirect the output from make to a file for later reference. This file contains the exact
commands that were issued to compile each file and the final command which links everything into
an executable file. Relevant information from this file should be included when posting a bug report
concerning a build failure.

Building the Namelist

The first step in the run procedure is to generate the namelist files. The safest way to generate consistent
namelist settings is via the build-namelist utility. Even in the case where only a slight modification to the
namelist is desired, the best practice is to provide the modified value as an argument to build-namelist
and allow it to actually generate the namelist files.

NOTE: The default configuration of CAM using the cam5 physics package requires that about 60
datasets and dozens of parameter values be specified in order to run correctly. Trying to manage namelists
of that complexity by hand editing files is extremely error prone and is strongly discouraged. User
modifications to the default namelist settings can be made in a number of ways while still letting build-
namelist actually generate the final namelist. In particular, the -namelist, -infile, and -use_case
arguments to build-namelist are all mechanisms by which the user can override default values or specify
additional namelist variables and still allow build-namelist to do the error and consistency checking which
makes the namelist creation process more robust.

The following interactive C shell session builds a default namelist for CAM. We assume that a successful
execution of configure was performed in the build directory as discussed in the previous sections. This is
an essential prerequisite because the config_cache.xml file produced by configure is a required input
file to build-namelist. One of the responsibilities of build-namelist is to set appropriate default values
for many namelist variables, and it can only do this if it knows how the CAM executable was configured.

Building and Running CAM

10

That information is present in the cache file. As in the previous section the shell variable camcfg is set
to the CAM configuration directory ($CAM_ROOT/models/atm/cam/bld).

We begin by changing into the directory where CAM will be run. It is usually convenient to have the run
directory be separate from the build directory. Possibly a number of different runs will be done that each
need to have a separate run directory for the output files, but will all use the same executable file from a
common build directory. It is, of course, possible to execute build-namelist in the build directory since
that's where the cache file is and so you don't need to specify to build-namelist where to find that file (it
looks in the current working directory by default). But then, assuming you plan to run CAM in a different
directory, all the files produced by build-namelist need to be copied to the run directly. If you're running
configure and build-namelist from a script, then you need to know how to specify the filenames for the
files that need to be copied. For this reason it's more robust to change to the run directory and execute
build-namelist there. That way if there's a change to the files that are produced, your script doesn't break
due to the files not all getting copied to the run directory.

Next we set the CSMDATA environment variable to point to the root directory of the tree containing the
input data files. Note that this is a required input for build-namelist (this information may alternatively
be provided using the -csmdata argument). If not provided then build-namelist will fail with an
informative message. The information is required because many of the namelist variables have values that
are absolute filepaths. These filepaths are resolved by build-namelist by prepending the CSMDATA root
to the relative filepaths that are stored in the default values database.

The build-namelist commandline contains the -config argument which is used to point to the cache file
which was produced in the build directory. It also contains the -test argument, explained further below.

% cd /work/user/cam_test
% setenv CSMDATA /fs/cgd/csm/inputdata
% $camcfg/build-namelist -test -config /work/user/cam_test/bld/config_cache.xml
Writing CICE namelist to ./ice_in
Writing RTM namelist to ./rof_in
Writing DOCN namelist to ./docn_ocn_in
Writing DOCN stream file to ./docn.stream.txt
Writing CLM namelist to ./lnd_in
Writing driver namelist to ./drv_in
CAM writing dry deposition namelist to drv_flds_in
Writing ocean component namelist to ./docn_in
CAM writing namelist to atm_in
Checking whether input datasets exist locally...
OK -- found depvel_file = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart/dvel/depvel_monthly.nc
OK -- found tracer_cnst_filelist = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart_aero/oxid/oxid_1.9x2.5_L26_clim_list.c090805.txt
OK -- found tracer_cnst_datapath = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart_aero/oxid
OK -- found depvel_lnd_file = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart/dvel/regrid_vegetation.nc
OK -- found xs_long_file = /fs/cgd/csm/inputdata/atm/waccm/phot/temp_prs_GT200nm_jpl06_c080930.nc
OK -- found rsf_file = /fs/cgd/csm/inputdata/atm/waccm/phot/RSF_GT200nm_v3.0_c080416.nc
OK -- found clim_soilw_file = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart/dvel/clim_soilw.nc
OK -- found exo_coldens_file = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart/phot/exo_coldens.nc
OK -- found tracer_cnst_file = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart_aero/oxid/oxid_1.9x2.5_L26_1850-2005_c091123.nc
OK -- found season_wes_file = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart/dvel/season_wes.nc
OK -- found solar_data_file = /fs/cgd/csm/inputdata/atm/cam/solar/solar_ave_sc19-sc23.c090810.nc
OK -- found soil_erod = /fs/cgd/csm/inputdata/atm/cam/dst/dst_10x15_c090203.nc
OK -- found bndtvs = /fs/cgd/csm/inputdata/atm/cam/sst/sst_HadOIBl_bc_10x15_clim_c050526.nc
OK -- found focndomain = /fs/cgd/csm/inputdata/atm/cam/ocnfrac/domain.camocn.10x15_USGS_070807.nc
OK -- found tropopause_climo_file = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart/ub/clim_p_trop.nc
OK -- found fpftcon = /fs/cgd/csm/inputdata/lnd/clm2/pftdata/pft-physiology.c110425.nc

Building and Running CAM

11

OK -- found fsnowaging = /fs/cgd/csm/inputdata/lnd/clm2/snicardata/snicar_drdt_bst_fit_60_c070416.nc
OK -- found fatmlndfrc = /fs/cgd/csm/inputdata/share/domains/domain.lnd.fv10x15_USGS.110713.nc
OK -- found fsnowoptics = /fs/cgd/csm/inputdata/lnd/clm2/snicardata/snicar_optics_5bnd_c090915.nc
OK -- found fsurdat = /fs/cgd/csm/inputdata/lnd/clm2/surfdata/surfdata_10x15_simyr2000_c090928.nc
OK -- found prescribed_ozone_datapath = /fs/cgd/csm/inputdata/atm/cam/ozone
OK -- found prescribed_ozone_file = /fs/cgd/csm/inputdata/atm/cam/ozone/ozone_1.9x2.5_L26_2000clim_c091112.nc
OK -- found liqopticsfile = /fs/cgd/csm/inputdata/atm/cam/physprops/F_nwvl200_mu20_lam50_res64_t298_c080428.nc
OK -- found iceopticsfile = /fs/cgd/csm/inputdata/atm/cam/physprops/iceoptics_c080917.nc
OK -- found water_refindex_file = /fs/cgd/csm/inputdata/atm/cam/physprops/water_refindex_rrtmg_c080910.nc
OK -- found ncdata = /fs/cgd/csm/inputdata/atm/cam/inic/fv/cami_0000-01-01_10x15_L30_c081013.nc
OK -- found bnd_topo = /fs/cgd/csm/inputdata/atm/cam/topo/USGS-gtopo30_10x15_remap_c050520.nc
OK -- found ext_frc_specifier for SO2 = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart_aero/emis/ar5_mam3_so2_elev_2000_c090726.nc
OK -- found ext_frc_specifier for bc_a1 = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart_aero/emis/ar5_mam3_bc_elev_2000_c090726.nc
OK -- found ext_frc_specifier for num_a1 = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart_aero/emis/ar5_mam3_num_a1_elev_2000_c090726.nc
OK -- found ext_frc_specifier for num_a2 = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart_aero/emis/ar5_mam3_num_a2_elev_2000_c090726.nc
OK -- found ext_frc_specifier for pom_a1 = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart_aero/emis/ar5_mam3_oc_elev_2000_c090726.nc
OK -- found ext_frc_specifier for so4_a1 = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart_aero/emis/ar5_mam3_so4_a1_elev_2000_c090726.nc
OK -- found ext_frc_specifier for so4_a2 = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart_aero/emis/ar5_mam3_so4_a2_elev_2000_c090726.nc
OK -- found srf_emis_specifier for DMS = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart_aero/emis/aerocom_mam3_dms_surf_2000_c090129.nc
OK -- found srf_emis_specifier for SO2 = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart_aero/emis/ar5_mam3_so2_surf_2000_c090726.nc
OK -- found srf_emis_specifier for SOAG = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart_aero/emis/ar5_mam3_soag_1.5_surf_2000_c100217.nc
OK -- found srf_emis_specifier for bc_a1 = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart_aero/emis/ar5_mam3_bc_surf_2000_c090726.nc
OK -- found srf_emis_specifier for num_a1 = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart_aero/emis/ar5_mam3_num_a1_surf_2000_c090726.nc
OK -- found srf_emis_specifier for num_a2 = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart_aero/emis/ar5_mam3_num_a2_surf_2000_c090726.nc
OK -- found srf_emis_specifier for pom_a1 = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart_aero/emis/ar5_mam3_oc_surf_2000_c090726.nc
OK -- found srf_emis_specifier for so4_a1 = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart_aero/emis/ar5_mam3_so4_a1_surf_2000_c090726.nc
OK -- found srf_emis_specifier for so4_a2 = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart_aero/emis/ar5_mam3_so4_a2_surf_2000_c090726.nc
OK -- found mode_defs for so4_a1 = /fs/cgd/csm/inputdata/atm/cam/physprops/sulfate_rrtmg_c080918.nc
OK -- found mode_defs for pom_a1 = /fs/cgd/csm/inputdata/atm/cam/physprops/ocpho_rrtmg_c101112.nc
OK -- found mode_defs for soa_a1 = /fs/cgd/csm/inputdata/atm/cam/physprops/ocphi_rrtmg_c100508.nc
OK -- found mode_defs for bc_a1 = /fs/cgd/csm/inputdata/atm/cam/physprops/bcpho_rrtmg_c100508.nc
OK -- found mode_defs for dst_a1 = /fs/cgd/csm/inputdata/atm/cam/physprops/dust4_rrtmg_c090521.nc
OK -- found mode_defs for ncl_a1 = /fs/cgd/csm/inputdata/atm/cam/physprops/ssam_rrtmg_c100508.nc
OK -- found mode_defs for so4_a2 = /fs/cgd/csm/inputdata/atm/cam/physprops/sulfate_rrtmg_c080918.nc
OK -- found mode_defs for soa_a2 = /fs/cgd/csm/inputdata/atm/cam/physprops/ocphi_rrtmg_c100508.nc
OK -- found mode_defs for ncl_a2 = /fs/cgd/csm/inputdata/atm/cam/physprops/ssam_rrtmg_c100508.nc
OK -- found mode_defs for dst_a3 = /fs/cgd/csm/inputdata/atm/cam/physprops/dust4_rrtmg_c090521.nc
OK -- found mode_defs for ncl_a3 = /fs/cgd/csm/inputdata/atm/cam/physprops/ssam_rrtmg_c100508.nc
OK -- found mode_defs for so4_a3 = /fs/cgd/csm/inputdata/atm/cam/physprops/sulfate_rrtmg_c080918.nc
OK -- found rad_climate for mam3_mode1 = /fs/cgd/csm/inputdata/atm/cam/physprops/mam3_mode1_rrtmg_c110318.nc
OK -- found rad_climate for mam3_mode2 = /fs/cgd/csm/inputdata/atm/cam/physprops/mam3_mode2_rrtmg_c110318.nc
OK -- found rad_climate for mam3_mode3 = /fs/cgd/csm/inputdata/atm/cam/physprops/mam3_mode3_rrtmg_c110318.nc

The first nine lines of output from build-namelist inform the user about the files that have been created.
There are namelist files for the ice component (ice_in), the river runoff component (rof_in), the
land component (lnd_in), the data ocean component (docn_in, docn_ocn_in), the atmosphere
component (atm_in), the driver (drv_in), and a file that is read by both the atmosphere and land
components (drv_flds_in). There is also a "stream file" (docn.stream.txt) which is read by the
data ocean component. Note that these filenames are hardcoded in the components and cannot be changed
without source code modifications.

The next section of output is the result of using the -test argument to build-namelist. As with configure
we recommend using this argument whenever a model configuration is being run for the first time. It
checks that each of the files that are present in the generated namelists can be found in the input data tree

Building and Running CAM

12

whose root is given by the CSMDATA environment variable. If a file is not found then the user will need
to take steps to make that file accessible to the executing model before a successful run will be possible.
The following is a list of possible actions:

• Acquire the missing file. If this is a default file supplied by the CESM project then you will be able
to download the file from the project's svn data repository (see the section called “Acquiring Input
Datasets”).

• If you have write permissions in the directory under $CSMDATA then add the missing file to the
appropriate location there.

• If you don't have write permissions under $CSMDATA then put the file in a place where you can (for
example, your run directory) and rerun build-namelist with an explicit setting for the file using your
specific filepath.

Example 2.1. Use build-namelist to specify a dataset in a non-default location.

Suppose that the -test option informed you that the ncdata file
cami_0000-01-01_10x15_L30_c081013.nc was not found. You acquire the file from the data
repository, but don't have permissions to write in the $CSMDATA tree. So you put the file in your run
directory and issue a build-namelist command that looks like this:

% $camcfg/build-namelist -config /work/user/cam_test/bld/config_cache.xml \
 -namelist "&atm ncdata='/work/user/cam_test/cami_0000-01-01_10x15_L30_c081013.nc' /"

Now the namelist in atm_in will contain an initial file (specified by namelist variable ncdata) which
will be found by the executing CAM model.

Acquiring Input Datasets
If you are doing a standard production run that is supported in the CESM scripts, then using those scripts
will automatically invoke a utility to acquire needed input datasets. The information in this section is to
aid developers using CAM standalone scripts.

The input datasets required to run CAM are available from a Subversion repository located here:
https://svn-ccsm-inputdata.cgd.ucar.edu/trunk/inputdata/. The user name and password for the input data
repository will be the same as for the code repository (which are provided to users when they register to
acquire access to the CESM source code repository).

Example 2.2. Acquire missing dataset

If you have a list of files that you need to acquire before running CAM, then you can either
just issue commands interactively, or if your list is rather long then you may want to put the
commands into a shell script. For example, suppose after running build-namelist with the -
test option you find that you need to acquire the file /fs/cgd/csm/inputdata/atm/cam/
inic/fv/cami_0000-01-01_10x15_L26_c030918.nc. And let's assume that /fs/cgd/
csm/inputdata/ is the root directory of the inputdata tree, and that you have permissions to write
there. If the subdirectory atm/cam/inic/fv/ doesn't already exist, then create it. Finally, issue the
following commands at an interactive C shell prompt:

% set svnrepo='https://svn-ccsm-inputdata.cgd.ucar.edu/trunk/inputdata'
% cd /fs/cgd/csm/inputdata/atm/cam/inic/fv
% svn export $svnrepo/atm/cam/inic/fv/cami_0000-01-01_10x15_L26_c030918.nc

https://svn-ccsm-inputdata.cgd.ucar.edu/trunk/inputdata/

Building and Running CAM

13

Error validating server certificate for 'https://svn-ccsm-inputdata.cgd.ucar.edu:443':
 - The certificate is not issued by a trusted authority. Use the
 fingerprint to validate the certificate manually!
 - The certificate hostname does not match.
 - The certificate has expired.
Certificate information:
 - Hostname: localhost.localdomain
 - Valid: from Feb 20 23:32:25 2008 GMT until Feb 19 23:32:25 2009 GMT
 - Issuer: SomeOrganizationalUnit, SomeOrganization, SomeCity, SomeState, --
 - Fingerprint: 86:01:bb:a4:4a:e8:4d:8b:e1:f1:01:dc:60:b9:96:22:67:a4:49:ff
(R)eject, accept (t)emporarily or accept (p)ermanently? p
A cami_0000-01-01_10x15_L26_c030918.nc
Export complete.

The messages about validating the server certificate will only occur for the first file that you export if you
answer "p" to the question as in the example above.

Running CAM
Once the namelist files have successfully been produced, and the necessary input datasets are available,
the model is ready to run. Usually CAM will be run with SPMD parallelization enabled, and this requires
setting up MPI resources and possibly dealing with batch queues. These issues will be addressed briefly in
the section called “Sample Run Scripts”. But for a simple test in serial mode executed from an interactive
shell, we only need to issue the following command:

% /work/user/cam_test/bld/cam >&! cam.log

The commandline above redirects STDOUT and STDERR to the file cam.log. The CAM logfile contains
a substantial amount of information from all components that can be used to verify that the model is running
as expected. Things like namelist variable settings, input datasets used, and output datasets created are all
echoed to the log file. This is the first place to look for problems when a model run is unsuccessful. It is
also very useful to include relevant information from the logfile when submitting bug reports.

Sample Run Scripts

14

Chapter 3. Input datasets
The minimal CAM configuration requires an initial conditions dataset. But most configurations require in
addition to initial conditions a variety of boundary condition files. This chapter will provide an overview
of CAM's dataset requirements and some information on the provenance of the default datasets.

SST and Sea Ice Boundary Files
The standard CAM standalone configuration (An F compset when using CESM scripts) uses prescribed
sea surface temperatures (SST) and sea ice fractions from datasets containing either climatological or time
series data. The source of this data for CAM's default datasets is Hurrell et al. [2008].

The default CAM datasets have been preconditioned to comply with the AMIP II requirement as described
in Taylor et al. [2000]. The requirement is that the SST and sea-ice concentration boundary conditions
should be specified such that the monthly means computed from model output precisely agree with the
monthly means in the input dataset.

The original Hurrell datasets are on a 1 degree grid. The AMIP II versions of these dataset are available
as 1 degree datasets and have also been spatially interpolated to several spectral and finite volume grid
resolutions. The currently available datasets are:

Pre-industrial climatology (1870 - 1890):

atm/cam/sst/sst_HadOIBl_bc_1x1_clim_pi_c101029.nc
atm/cam/sst/sst_HadOIBl_bc_0.23x0.31_clim_pi_c091020.nc
atm/cam/sst/sst_HadOIBl_bc_0.47x0.63_clim_pi_c100128.nc
atm/cam/sst/sst_HadOIBl_bc_0.9x1.25_clim_pi_c100127.nc
atm/cam/sst/sst_HadOIBl_bc_1.9x2.5_clim_pi_c100127.nc
atm/cam/sst/sst_HadOIBl_bc_4x5_clim_pi_c100127.nc
atm/cam/sst/sst_HadOIBl_bc_10x15_clim_pi_c100127.nc
atm/cam/sst/sst_HadOIBl_bc_128x256_clim_pi_c100128.nc
atm/cam/sst/sst_HadOIBl_bc_64x128_clim_pi_c100128.nc
atm/cam/sst/sst_HadOIBl_bc_48x96_clim_pi_c100128.nc
atm/cam/sst/sst_HadOIBl_bc_32x64_clim_pi_c100128.nc
atm/cam/sst/sst_HadOIBl_bc_8x16_clim_pi_c100128.nc

Historical Time Series

atm/cam/sst/sst_HadOIBl_bc_1x1_1850_2012_c130411.nc
atm/cam/sst/sst_HadOIBl_bc_0.23x0.31_1850_2010_c110526.nc
atm/cam/sst/sst_HadOIBl_bc_0.47x0.63_1850_2012_c130411.nc
atm/cam/sst/sst_HadOIBl_bc_0.9x1.25_1850_2012_c130411.nc
atm/cam/sst/sst_HadOIBl_bc_1.9x2.5_1850_2012_c130411.nc
atm/cam/sst/sst_HadOIBl_bc_4x5_1850_2012_c130411.nc
atm/cam/sst/sst_HadOIBl_bc_10x15_1850_2012_c130411.nc
atm/cam/sst/sst_HadOIBl_bc_128x256_1850_2012_c130411.nc
atm/cam/sst/sst_HadOIBl_bc_64x128_1850_2012_c130411.nc
atm/cam/sst/sst_HadOIBl_bc_48x96_1850_2008_c100128.nc
atm/cam/sst/sst_HadOIBl_bc_32x64_1850_2012_c130411.nc
atm/cam/sst/sst_HadOIBl_bc_8x16_1850_2012_c130411.nc

Present day climatology (1982 - 2001):

Input datasets

15

atm/cam/sst/sst_HadOIBl_bc_1x1_clim_c101029.nc
atm/cam/sst/sst_HadOIBl_bc_0.23x0.31_clim_c061106.nc
atm/cam/sst/sst_HadOIBl_bc_0.47x0.63_clim_c061106.nc
atm/cam/sst/sst_HadOIBl_bc_0.9x1.25_clim_c040926a.nc
atm/cam/sst/sst_HadOIBl_bc_1.9x2.5_clim_c061031.nc
atm/cam/sst/sst_HadOIBl_bc_4x5_clim_c061031.nc
atm/cam/sst/sst_HadOIBl_bc_10x15_clim_c050526.nc
atm/cam/sst/sst_HadOIBl_bc_256x512_clim_c031031.nc
atm/cam/sst/sst_HadOIBl_bc_128x256_clim_c050526.nc
atm/cam/sst/sst_HadOIBl_bc_64x128_clim_c050526.nc
atm/cam/sst/sst_HadOIBl_bc_48x96_clim_c050526.nc
atm/cam/sst/sst_HadOIBl_bc_32x64_clim_c050526.nc
atm/cam/sst/sst_HadOIBl_bc_8x16_clim_c050526.nc

16

Chapter 4. Model Output
CAM produces a series of NetCDF format history files containing atmospheric gridpoint data generated
during the course of a run. It also produces a series of NetCDF format restart files necessary to continue a
run once it has terminated successfully and a series of initial conditions files that may be used to initialize
new simulations. The contents of these datasets are described below.

Model History Files
History files contain model data values written at specified frequencies during a run. Options are also
available to record averaged, instantaneous, maximum, or minimum values on a field-by-field basis. If the
user wishes to see a field written at more than one time frequency (e.g. daily, hourly), additional history
files must be declared. This functionality is available via setting namelist variables.

History files may be visualized using various commercial or freely available tools. Examples include
the the NCAR Graphics package (via NCL), CDAT, FERRET, ncview, MATLAB, and IDL. For a list
of software tools for interacting with NetCDF files, view the UNIDATA maintained link Software for
Manipulating or Displaying NetCDF Data [http://www.unidata.ucar.edu/software/netcdf/software.html].

General Features of History Files
CAM writes a sequence of time samples to each of its specified history files. There can currently be from
one to six history file streams, and each stream has its own set of the following attributes:

• fields

• output frequency

• maximun number of time samples in a file

• output precision (4-byte or 8-byte floats)

• output domain (global or rectangular subdomains)

Each time sample in a history file has an associated timestamp which conforms to the CF metadata
conventions [http://cfconventions.org/]. The time unit used in CAM's output files is "days since reference
date" where the reference date is the run start date by default, but can be customized via the ref_ymd
and ref_tod namelist variables. The variables relevant to the timestamps are the following (from the
output of the NetCDF ncdump utility):

 double time(time) ;
 time:long_name = "time" ;
 time:units = "days since 0000-01-01 00:00:00" ;
 time:calendar = "noleap" ;
 time:bounds = "time_bnds" ;

 double time_bnds(time, nbnd) ;
 time_bnds:long_name = "time interval endpoints" ;

 int date(time) ;
 date:long_name = "current date (YYYYMMDD)" ;

 int datesec(time) ;

http://www.unidata.ucar.edu/software/netcdf/software.html
http://www.unidata.ucar.edu/software/netcdf/software.html
http://www.unidata.ucar.edu/software/netcdf/software.html
http://cfconventions.org/
http://cfconventions.org/
http://cfconventions.org/

Model Output

17

 datesec:long_name = "current seconds of current date" ;

The variable names, time, time_bnds, date, and datesec are all local conventions. What makes
the history files CF compliant is that the time coordinate, time, can be identified by it's units attribute
"days since 0000-01-01 00:00:00". The reference date is in the form YYYY-MM-DD HH:MM:SS where
YYYY, MM, DD, HH, MM, SS are year, month, day, hour, minute, second respectively, and a missing
timezone defaults to UTC. The calendar and bounds attributes are also part of CF. The calendar
value "noleap" denotes the Gregorian calendar with no leap years. The bounds value time_bnds
denotes that the variable with the name time_bnds contains the timestamps that bound the time intervals
over which an operation such as computing an averager or a minimum or maximum value has been applied.
Whether or not the interval specified by time_bnds is relevent depends on the individual variables, e.g.,
a single file can contain both instantaneous and time averaged fields. The type of the time operation that
has been applied is contained in the cell_methods attribute of each variable, e.g.,

 float T(time, lev, lat, lon) ;
 T:mdims = 1 ;
 T:units = "K" ;
 T:long_name = "Temperature" ;
 T:cell_methods = "time: mean" ;

The cell_methods attribute for the temperature variable indicates that it is being output as a time
averaged field. If temperature was instantaneous then the cell_methods attribute would not be present
since instantaneous is the default.

The variables date and datesec are for convenience only; they don't play any role in terms of CF
compliance. The date variable is an integer which is encoded to contain the digits YYYYMMDD where
YYYY, MM, and DD are the year, month, and day of month respectively. datesec is the integer number
of seconds past 0Z in the current day. The variables date and datesec are redundant in the sense that
they can be recovered from the time variable via a date calculation using the specified calendar.

Timestamps and time intervals

The timestamp associated with each time sample in a history file is the model time at the end of the timestep
during which the model writes data to the disk. In the case of instantaneous data the meaning is clear.
However when the data is representative of a time interval, the timestamp corresponds to the end of the
interval.

This is often a point of confusion when looking at history files. Since the endpoint of one interval is the
same as the begining of the next interval, when looking at a monthly average for January, which has a
timestamp of 0Z on Feb 01, at first glance the timestamp would seem to correspond to a February average.
Hence it's important for post processing tools to make use of the data in the time_bnds variable so that
the time interval endpoints can be used to compute an interval midpoint which is the more appropriate
timestamp to associate with the interval.

Example 4.1. Timestamps for a year of monthly averages

Here are the timestamps and corresponding time interval bounds for a one year sequence of monthly
averages starting at 0000-01-01 00:00:00.

Month time date datesec time_bnds
Jan 31 201 0 0, 31
Feb 59 301 0 31, 59
Mar 90 401 0 59, 90

Model Output

18

Apr 120 501 0 90, 120
May 151 601 0 120, 151
Jun 181 701 0 151, 181
Jul 212 801 0 181, 212
Aug 243 901 0 212, 243
Sep 273 1001 0 243, 273
Oct 304 1101 0 273, 304
Nov 334 1201 0 304, 334
Dec 365 10101 0 334, 365

Multiple time samples in a single file

CAM's default history output is a sequence of monthly averaged fields, written with one time sample per
file. This restriction is related to the default file naming scheme which uses the string "YYYY-MM" to
indicate the year and month of the average contained in the file. However in general it is possible to write
multiple time samples in any of the history file streams that don't contain monthly time intervals. However
there is one somewhat unexpected "feature" of multiple time sample files that we wish to point out here.

Example 4.2. Timestamps for five daily averages

Here are the timestamps and corresponding time interval bounds for all time samples written to a single
file from a 5 day run starting at 0000-01-01 00:00:00.

Sample time date datesec time_bnds
1 0 101 0 0, 0
2 1 102 0 0, 1
3 2 103 0 1, 2
4 3 104 0 2, 3
5 4 105 0 4, 5
6 5 106 0 5, 6

Instead of ending up with a file containing five time samples, i.e., a daily average for each of the first
five days of January, we get six time samples. The first one looks a bit strange since the time bounds
are indicating an interval of zero duration. But in fact that's correct for the first time sample which is
instantaneous data representing the initial conditions which have only been modify by a partial first step up
to the point of the radiation calculation. This "extra" time sample from the initialization phase is included
in every history file except for the monthly average file. An unfortunate consequence of this extra time
sample is that it's not possible to create a sequence of files with the same number of time intervals since
the first file in the sequence will always have one fewer time interval than the rest due to the inclusion
of the time zero sample.

Default History Fields and Master Field Lists
CAM is set up by default to output a set of fields to a single monthly average history file. There is a much
larger set of available fields, known as the "master field list," from which the user can choose fields of
interest to add to the history file via namelist settings. Both the set of default fields and the master field
list depend on how CAM is configured. Due to the large number of fields we have chosen to make lists of
fields for some standard configuration available via linked documents rather than to inline the lists here.
Each of the field list documents is comprised of tables containing the lists of fields that are output by
default as well as the master field list.

NOTE: The master field list tables may contain some fields that are not actually available for output.
The presence of a field in the master field list is a necessary, but not sufficient condition that the

Model Output

19

corresponding field in the history file will contain valid data. This is because in some instances fields are
added to the master field list (this is done in the source code) even though that field may not be computed in
the configuration that is built (specified via the arguments to configure). When adding non-default fields
to the history file it's important to check that the fields contain reasonable data before doing a long run.

The following links provide tables of default and master field lists for some standard model configurations
which are characterized by the values of the -dyn, -phys, and -chem arguments to configure. The
source of the information in these tables is CAM's default log file, so you can always look there for any
configuration not included in the list below.

• fv, cam4, none [hist_flds_fv_cam4.html]

• fv, cam4, trop_bam [hist_flds_fv_cam4_trop_bam.html]

• fv, cam5, trop_mam3 [hist_flds_fv_cam5.html]

• fv, cam4, waccm_mozart [hist_flds_fv_cam4_waccm.html] (use_case: waccm_2000_cam4)

• fv, cam4, super_fast_llnl [hist_flds_fv_cam4_super_fast_llnl.html] (use_case:
2000_cam4_super_fast_llnl)

hist_flds_fv_cam4.html
hist_flds_fv_cam4.html
hist_flds_fv_cam4_trop_bam.html
hist_flds_fv_cam4_trop_bam.html
hist_flds_fv_cam5.html
hist_flds_fv_cam5.html
hist_flds_fv_cam4_waccm.html
hist_flds_fv_cam4_waccm.html
hist_flds_fv_cam4_super_fast_llnl.html
hist_flds_fv_cam4_super_fast_llnl.html

20

Chapter 5. Physics modifications via
the namelist

This chapter is comprised of sections that explore how to customize various aspects of CAM's run time
configuration. General instructions for building namelists using the build-namelist utility were given in
the section called “Building the Namelist”, and details of the build-namelist utility are in Appendix B,
The build-namelist utility.

Radiative Constituents
The atmospheric constituents which impact the calculation of radiative fluxes and heating rates are referred
to as radiative constituents. A single CAM run may potentially contain multiple sources of any given
constituent, for example, a prognostic version of ozone from a chemistry scheme and a prescribed version
of ozone from a dataset. The radiative constituent module was designed to

• provide an explicit specification of the gas and aerosol constituents that impact the radiation calculations,
and

• allow this specification to be modified via the namelist.

A detailed description of the radiative constituent module is found in the Reference Manual [../rm5_3/
rm.html#rad_cnst_intro].

Putting the entire specification of the radiative constituents into the namelist results in a certain amount
of complexity which is hard to avoid. This sections begins with a description of what's in the default
specifications for both the cam4 and cam5 physics packages. Following that are some examples of how
to modify the default namelist settings.

Default rad_climate for cam4 physics
The cam4 physics package uses prescribed gases (except for water vapor), and prescribed bulk aerosols.
rad_climate is the namelist variable which holds the specification of radiatively active constituents.
The default value of rad_climate generated by build-namelist is:

rad_climate =
 'A:Q:H2O', 'N:O2:O2', 'N:CO2:CO2', 'N:ozone:O3',
 'N:N2O:N2O', 'N:CH4:CH4', 'N:CFC11:CFC11', 'N:CFC12:CFC12',
 'N:sulf:/CSMDATA/atm/cam/physprops/sulfate_camrt_c080918.nc',
 'N:dust1:/CSMDATA/atm/cam/physprops/dust1_camrt_c080918.nc',
 'N:dust2:/CSMDATA/atm/cam/physprops/dust2_camrt_c080918.nc',
 'N:dust3:/CSMDATA/atm/cam/physprops/dust3_camrt_c080918.nc',
 'N:dust4:/CSMDATA/atm/cam/physprops/dust4_camrt_c080918.nc',
 'N:bcar1:/CSMDATA/atm/cam/physprops/bcpho_camrt_c080918.nc',
 'N:bcar2:/CSMDATA/atm/cam/physprops/bcphi_camrt_c080918.nc',
 'N:ocar1:/CSMDATA/atm/cam/physprops/ocpho_camrt_c080918.nc',
 'N:ocar2:/CSMDATA/atm/cam/physprops/ocphi_camrt_c080918.nc',
 'N:SSLTA:/CSMDATA/atm/cam/physprops/ssam_camrt_c080918.nc',
 'N:SSLTC:/CSMDATA/atm/cam/physprops/sscm_camrt_c080918.nc'

The rad_climate variable takes an array of string values. Each of the strings has three fields separated
by colons. In this example the first field of each string is either an A or an N. An A indicates the constituent

../rm5_3/rm.html#rad_cnst_intro
../rm5_3/rm.html#rad_cnst_intro
../rm5_3/rm.html#rad_cnst_intro

Physics modifications via the namelist

21

is advected and an N indicates the constituent is not advected. Generally a non-advected constituent is
one whose value is prescribed from a dataset but that's not always the case. It's also possible that a non-
advected constituent is one that has been prognosed by a chemistry scheme (e.g. the cloud borne species in
the modal aerosol models) or diagnosed from other prognostic species. The second field in each string is
a name that is used to identify the constituent in the appropriate internal data structure (there are separate
data structures for the advected and the non-advected constituents). The third field is either a name from
the set of gas specie names recognized by the radiation code, or it is an absolute pathname of a dataset
that contains physical and optical properties of an aerosol. This third field is how CAM distinquishes the
gas from the aerosol species.

The names used for the prescribed gas species except ozone in both the cam4 and cam5 physics packages,
i.e., O2, CO2, N2O, CH4, CFC11, and CFC12, are hardcoded in the module ghg_data which is
responsible for setting the values of these species in the physics buffer. The name for water vapor, Q,
is hardcoded in a cnst_add subroutine call made from subroutine phys_register. The name for
ozone, ozone, is hardcoded in the prescribed_ozone module which is responsible for reading ozone
datasets and setting the values for ozone in the physics buffer.

The names used to identify the gas species which must be provided to the cam4 radiation code are H2O, O2,
CO2, O3, N2O, CH4, CFC11, and CFC12. These names are hardcoded in the module radconstants.
There are no datasets associated with the gas specie names because the optical properties of the gases are
handled by the radiation code directly.

The names used to identify the bulk aerosol species are hardcoded in the build-namelist
utility and are specified to the prescribed_aero module by the namelist variable
prescribed_aero_specifier as follows:

prescribed_aero_specifier =
 'sulf:SO4', 'bcar1:CB1', 'bcar2:CB2', 'ocar1:OC1', 'ocar2:OC2',
 'sslt1:SSLT01', 'sslt2:SSLT02', 'sslt3:SSLT03', 'sslt4:SSLT04',
 'dust1:DST01', 'dust2:DST02', 'dust3:DST03', 'dust4:DST04'

The first name in each of these colon separated pairs is the one the prescribed_aero module adds
to the physics buffer, while the second name is the variable name in the dataset. The first names for all
the species except the sea salt bins (sslt1, ..., sslt4) are the ones that appear in the rad_climate
specifier. Sea salt is treated specially by repartitioning the total mass in the four bins into a coarse and an
accumulation mode with the names SSLTC and SSLTA respectively. The repartitioning is done by the
sslt_rebin module.

Each of the aerosol species has an associated file which contains physical and optical properties.

Default rad_climate for cam5 physics
The cam5 physics package uses the same prescribed gases as the cam4 package, but uses prognostic
modal aerosols from the trop_mam3 chemistry package. The default value of rad_climate generated
by build-namelist is:

rad_climate =
 'A:Q:H2O', 'N:O2:O2', 'N:CO2:CO2', 'N:ozone:O3',
 'N:N2O:N2O', 'N:CH4:CH4', 'N:CFC11:CFC11', 'N:CFC12:CFC12',
 'M:mam3_mode1:/CSMDATA/atm/cam/physprops/mam3_mode1_rrtmg_c110318.nc',
 'M:mam3_mode2:/CSMDATA/atm/cam/physprops/mam3_mode2_rrtmg_c110318.nc',
 'M:mam3_mode3:/CSMDATA/atm/cam/physprops/mam3_mode3_rrtmg_c110318.nc'

Physics modifications via the namelist

22

The gas species mass mixing ratios come from the same constituents in cam5 as they did in cam4
(but the radiative treatment is different since the rrtmg radiation package replaces camrt). Hence the
rad_climate strings for the gasses are the same as they were in the cam4 physics example.

The aerosol constituents in this rad_climate specification are all in the form of modes. The first
field is an M rather than an A or an N to indicate that the aerosol constituents are modes. Roughly, the
rad_climate variable lists the aerosol constituents whose contributions are added together to compute
the total aerosol optical depth. In the case of the bulk aerosols the optical depths due to the individual
aerosol species are summed to find the total aerosol optical depth. In the case of the modal aerosol model
it is the modes that are summed. Hence each mode has an entry in the rad_climate list, along with a
file that contains physical and optical properties of the mode as a whole. In the example above there are
three modes identified by the names mam3_mode1, mam3_mode2, and mam3_mode3. These names
are hardwired in the build-namelist utility and are only used to connect each mode with more detailed
specification of the constituents that comprise it. That specification is given by the namelist variable
mode_defs and looks as follows for the default trop_mam3 chemistry scheme.

mode_defs =
 'mam3_mode1:accum:=',
 'A:num_a1:N:num_c1:num_mr:+',
 'A:so4_a1:N:so4_c1:sulfate:/CSMDATA/atm/cam/physprops/sulfate_rrtmg_c080918.nc:+',
 'A:pom_a1:N:pom_c1:p-organic:/CSMDATA/atm/cam/physprops/ocpho_rrtmg_c101112.nc:+',
 'A:soa_a1:N:soa_c1:s-organic:/CSMDATA/atm/cam/physprops/ocphi_rrtmg_c100508.nc:+',
 'A:bc_a1:N:bc_c1:black-c:/CSMDATA/atm/cam/physprops/bcpho_rrtmg_c100508.nc:+',
 'A:dst_a1:N:dst_c1:dust:/CSMDATA/atm/cam/physprops/dust4_rrtmg_c090521.nc:+',
 'A:ncl_a1:N:ncl_c1:seasalt:/CSMDATA/atm/cam/physprops/ssam_rrtmg_c100508.nc',
 'mam3_mode2:aitken:=',
 'A:num_a2:N:num_c2:num_mr:+',
 'A:so4_a2:N:so4_c2:sulfate:/CSMDATA/atm/cam/physprops/sulfate_rrtmg_c080918.nc:+',
 'A:soa_a2:N:soa_c2:s-organic:/CSMDATA/atm/cam/physprops/ocphi_rrtmg_c100508.nc:+',
 'A:ncl_a2:N:ncl_c2:seasalt:/CSMDATA/atm/cam/physprops/ssam_rrtmg_c100508.nc',
 'mam3_mode3:coarse:=',
 'A:num_a3:N:num_c3:num_mr:+',
 'A:dst_a3:N:dst_c3:dust:/CSMDATA/atm/cam/physprops/dust4_rrtmg_c090521.nc:+',
 'A:ncl_a3:N:ncl_c3:seasalt:/CSMDATA/atm/cam/physprops/ssam_rrtmg_c100508.nc:+',
 'A:so4_a3:N:so4_c3:sulfate:/CSMDATA/atm/cam/physprops/sulfate_rrtmg_c080918.nc'

Similarly to the rad_climate variable, the mode_defs variable is an array of strings which provide
a definition for all the modes that may be used in a single run. The modes don't all need to appear in the
rad_climate variable; some may only be needed for diagnostic radiation calculations which will be
discussed in more detail later.

There are three different types of strings in mode_defs:

• The initial string in each mode specification contains three fields. The first is a name that identifies the
mode, the second is a name that identifies the type of the mode, and the final is the token "=".

• One string in each mode specification must contain the names for the mode number concentrations in
both the interstitial and cloud borne phases.

• One or more strings in each mode specification must contain the names for the mass mixing ratios in
both the interstitial and cloud borne phases of the individual constituents that comprise the mode.

The example of mode_defs above has been formatted in a way that makes the individual parts of each
mode definition stand out. The actual output from the build-namelist utility is not formatted like this and
is a bit harder to decipher.

Physics modifications via the namelist

23

What follows is an detailed explanation of the mode definitions in the example above.

• There are three modes defined, i.e., mam3_mode1, mam3_mode2, and mam3_mode3. The name of
a mode is arbitrary, the only requirement being that the same name is used in the rad_climate
(or rad_diag_N) and the mode_defs variables. These default mode names for trop_mam3 are
hardcoded in the build-namelist utility. The three modes are of type accum (accumulation), aitken,
and coarse respectively. The names for the mode types are hardcoded in the modal_aero_data
module.

• The second line in the definition of each mode contains the names of the number concentrations for the
interstitial and cloud borne phases. Looking specifically at the definition for mam3_mode1, the first
two fields are for the interstitial phase and specify that the name num_a1 is an advected constituent (A),
while the third and fourth fields are for the cloud borne phase and specify that the name num_c1 is a
non-advected constituent (N). The names of the number concentration constituents are hardcoded in the
modal_aero_initialize_data module. The fifth field, num_mr, is a fixed token recognized
by the parser of the mode_defs strings (in the rad_constituents module) as an indicator that
the string contains the number concentration names. The final token in the string, a "+", signals to the
parser that the definition of the current mode continues in the next string.

• The third through final strings in each mode definition contain specifications for each specie in the mode.
Looking again at the definition of mam3_mode1, the first specie is of type sulfate which is indicated
by the fifth field in that string. The specie type names are hardcoded in the modal_aero_data
module. The first two fields in the string provide the name for the mass mixing ratio of the specie in
the interstitial phase (so4_a1), and indicate that it is an advected constituent (A). Fields three and four
specify that the name of the mass mixing ratio for the cloud borne phase is so4_c1, and that this is
a non-advected constituent (N). The names of the mass mixing ratio constituents are hardcoded in the
modal_aero_initialize_data module. The sixth field in the string is the absolute pathname of
the file containing physical and optical properties of the specie. The last field in the string contains the
token "+" which again indicates that the definition of the mode continues in the next string.

Example 5.1. Modify a radiatively active gas

Suppose that we wish to modify the distribution of water vapor that is seen by the radiation calculations.
More specifically, consider modifying just the stratospheric part of the water vapor distribution while
leaving the troposheric distribution unchanged. To modify a radiatively active gas two things must be done.

• Change the name (and possibly the type) of the constituent which is providing the mass mixing ratios
to the radiation code. This is a simple modification to the rad_climate value.

• Make the necessary modifications to CAM to provide the new constituent mixing ratios. A likely
scenario for this example would be to create a new module which is responsible for adding the modified
water vapor field to the physics buffer. This module could leverage the existing tropopause module
to determine the vertical levels where changes need to be made. It could also leverage existing modules
for reading and interpolating prescribed constituents, for example the prescribed_ozone module.
Details of how to make this type of source code modification won't be covered here.

Now suppose the source code modifications have been made and the new water vapor constituent is in
the physics buffer with the name Q_fixstrat. The best way to modify the rad_climate variable is
to start from a value that was generated by build-namelist for the configuration of interest but with the
default water vapor, and then to modify that version of rad_climate and add the modified version to the
build-namelist command in our run script. Note that the entire value of rad_climate must be specified.
There is no way to just modify one individual string in the array of string values. If we are running with a
default cam5 configuration then the customized namelist would be generated by the following command.

Physics modifications via the namelist

24

$camcfg/build-namelist ... \
 -namelist "&cam ...
 rad_climate =
 'N:Q_fixstrat:H2O', 'N:O2:O2', 'N:CO2:CO2', 'N:ozone:O3',
 'N:N2O:N2O', 'N:CH4:CH4', 'N:CFC11:CFC11', 'N:CFC12:CFC12',
 'M:mam3_mode1:/CSMDATA/atm/cam/physprops/mam3_mode1_rrtmg_c110318.nc',
 'M:mam3_mode2:/CSMDATA/atm/cam/physprops/mam3_mode2_rrtmg_c110318.nc',
 'M:mam3_mode3:/CSMDATA/atm/cam/physprops/mam3_mode3_rrtmg_c110318.nc' /"

The only difference between this version of rad_climate and the default is that the string for water
vapor:

'A:Q:H2O'

has been replaced by

'N:Q_fixstrat:H2O'

In addition to specifying the new name for the constituent (Q_fixstrat), it was necessary to replace
the A by an N since the new constituent is not advected, even though it is derived in part for the constituent
Q which is advected.

Diagnostic radiative forcing
There are several namelist variables available for direct radiative forcing calculations in the cam5
physics package. But note that these online calculations are enabled for RRTMG only and not for the
CAM_RT radiation code used in the cam4 and earlier physics packages. The ability to do radiative
forcing calculations with CAM_RT is provided by using the offline tool PORT which is documented here
[https://wiki.ucar.edu/display/port/PORT], and described in the paper Conley et al. [2013]. The PORT
functionality is included in the CESM release code.

Namelist variables are available for ten radiative forcing calculations; rad_diag_1, ..., rad_diag_10.
The values of these variables use the exact same format as the rad_climate variable. When a diagnostic
calculation is requested, for example by setting the variable rad_diag_1, then the default history output
variables for the radiative heating rates and fluxes will be output for the diagnostic calculation as well.
The names of the variables for the diagnostic calculation will be distinquished from those that affect
the climate simulation by appending the strings '_d1', ..., '_d10' for diagnostic calculations specified by
rad_diag_1 through rad_diag_10 respectively.

Example 5.2. Aerosol radiative forcing

To compute the total aerosol radiative forcing we need a diagnostic calculation in which all the aerosols
have been removed. To do this we start from the default setting for the rad_climate variable, use that
as the initial setting for rad_diag_1, and then edit that initial setting to remove the aerosols. In the
cam5 physics this involves removing the specification of the three modes, so we end up with a setting in
our build-namelist command that looks like this

$camcfg/build-namelist ... \
 -namelist "&cam ...
 rad_diag_1 =
 'A:Q:H2O', 'N:O2:O2', 'N:CO2:CO2', 'N:ozone:O3',
 'N:N2O:N2O', 'N:CH4:CH4', 'N:CFC11:CFC11', 'N:CFC12:CFC12' /"

https://wiki.ucar.edu/display/port/PORT
https://wiki.ucar.edu/display/port/PORT

Physics modifications via the namelist

25

Example 5.3. Black carbon radiative forcing

To compute the radiative forcing of a single aerosol specie we need a diagnostic calculation in which that
specie has been removed from all modes that contain it. This is a bit more complicated that the previous
example where we were able to remove entire modes from the value of rad_diag_1. Removing species
from modes requires us to create new mode definitions. Using black carbon as a specific example, we
see from the default definitions of the trop_mam3 modes (the section called “Default rad_climate
for cam5 physics”) that black carbon is only contained in mam3_mode1. The best way to create the
definition of a new mode which doesn't contain black carbon is to copy the definition of mam3_mode1,
change its name, and remove the black carbon from the definition. Then use this new mode in place of
mam3_mode1 in the specifier for rad_diag_1. Below is an outline of our build-namelist command
with just the mode_defs and rad_diag_1 variables listed.

$camcfg/build-namelist ... \
 -namelist "&cam ...
mode_defs =
 'mam3_mode1:accum:=',
 'A:num_a1:N:num_c1:num_mr:+',
 'A:so4_a1:N:so4_c1:sulfate:/CSMDATA/atm/cam/physprops/sulfate_rrtmg_c080918.nc:+',
 'A:pom_a1:N:pom_c1:p-organic:/CSMDATA/atm/cam/physprops/ocpho_rrtmg_c101112.nc:+',
 'A:soa_a1:N:soa_c1:s-organic:/CSMDATA/atm/cam/physprops/ocphi_rrtmg_c100508.nc:+',
 'A:bc_a1:N:bc_c1:black-c:/CSMDATA/atm/cam/physprops/bcpho_rrtmg_c100508.nc:+',
 'A:dst_a1:N:dst_c1:dust:/CSMDATA/atm/cam/physprops/dust4_rrtmg_c090521.nc:+',
 'A:ncl_a1:N:ncl_c1:seasalt:/CSMDATA/atm/cam/physprops/ssam_rrtmg_c100508.nc',
 'mam3_mode2:aitken:=',
 'A:num_a2:N:num_c2:num_mr:+',
 'A:so4_a2:N:so4_c2:sulfate:/CSMDATA/atm/cam/physprops/sulfate_rrtmg_c080918.nc:+',
 'A:soa_a2:N:soa_c2:s-organic:/CSMDATA/atm/cam/physprops/ocphi_rrtmg_c100508.nc:+',
 'A:ncl_a2:N:ncl_c2:seasalt:/CSMDATA/atm/cam/physprops/ssam_rrtmg_c100508.nc',
 'mam3_mode3:coarse:=',
 'A:num_a3:N:num_c3:num_mr:+',
 'A:dst_a3:N:dst_c3:dust:/CSMDATA/atm/cam/physprops/dust4_rrtmg_c090521.nc:+',
 'A:ncl_a3:N:ncl_c3:seasalt:/CSMDATA/atm/cam/physprops/ssam_rrtmg_c100508.nc:+',
 'A:so4_a3:N:so4_c3:sulfate:/CSMDATA/atm/cam/physprops/sulfate_rrtmg_c080918.nc',
 'mam3_mode1_noBC:accum:=',
 'A:num_a1:N:num_c1:num_mr:+',
 'A:so4_a1:N:so4_c1:sulfate:/CSMDATA/atm/cam/physprops/sulfate_rrtmg_c080918.nc:+',
 'A:pom_a1:N:pom_c1:p-organic:/CSMDATA/atm/cam/physprops/ocpho_rrtmg_c101112.nc:+',
 'A:soa_a1:N:soa_c1:s-organic:/CSMDATA/atm/cam/physprops/ocphi_rrtmg_c100508.nc:+',
 'A:dst_a1:N:dst_c1:dust:/CSMDATA/atm/cam/physprops/dust4_rrtmg_c090521.nc:+',
 'A:ncl_a1:N:ncl_c1:seasalt:/CSMDATA/atm/cam/physprops/ssam_rrtmg_c100508.nc'

 rad_diag_1 =
 'A:Q:H2O', 'N:O2:O2', 'N:CO2:CO2', 'N:ozone:O3',
 'N:N2O:N2O', 'N:CH4:CH4', 'N:CFC11:CFC11', 'N:CFC12:CFC12',
 'M:mam3_mode1_noBC:/CSMDATA/atm/cam/physprops/mam3_mode1_rrtmg_c110318.nc',
 'M:mam3_mode2:/CSMDATA/atm/cam/physprops/mam3_mode2_rrtmg_c110318.nc',
 'M:mam3_mode3:/CSMDATA/atm/cam/physprops/mam3_mode3_rrtmg_c110318.nc' /"

Note that we just appended the new mode definition, mam3_mode1_noBC, to the end of the modes used
in the climate calculation, and then used that mode in place of mam3_mode1 in the rad_diag_1 value.

26

Appendix A. The configure utility
The configure utility provides a flexible way to specify any configuration of CAM. The best way
to communicate to another user how you built CAM is to simply supply them with the configure
commandline that was used (along with the source code version).

configure has two distinct operating modes which correspond to the two distinct ways of building CAM,
i.e., either using the CESM scripts, or using CAM standalone scripts. By default configure runs in the
mode used by the standalone scripts. In this mode configure is responsible for setting the filepaths and CPP
macros needed to build not only CAM, but all the components of the standalone configuration including
the land, sea ice, data ocean, and driver. In the mode used when building CAM from the CESM scripts
configure is only responsible for setting the filepaths and CPP macros needed to build a library containing
just the CAM component.

When configuring a build of standalone CAM, configure produces the files Filepath and Makefile.
In addition, a configuration cache file (config_cache.xml by default) is written which contains the
values of all the configuration parameters set by configure. The files produced by configure are written to
the directory where CAM will be built, which by default is the directory from which configure is executed,
but can be specified to be elsewhere (see the -cam_bld option).

When configuring CAM for a build using the CESM scripts, configure doesn't write a Makefile, but
instead writes a file CCSM_cppdefs which is used by the CESM Makefile. Also, the Filepath file
only contains paths for the CAM component.

In both modes configure is responsible for setting the correct filepaths and CPP macros to produce the
desired configuration of CAM's dynamical core, physics parameterizations and chemistry scheme. The
options that are involved in making these choices are described in the section called “CAM configuration”
below. The subsequent sections describe options used by the CAM standalone scripts.

configure will optionally perform tests to validate that the Fortran compiler is operational and Fortran 90
compliant, and that the linker can resolve references to required external libraries (NetCDF and possibly
MPI). These tests will point out problems with the user environment in a way that is much easier to
understand than looking at the output from a failed build of CAM. We strongly recommend that the first
time CAM is built on any new machine, configure should be invoked to execute these tests (see the -
test option).

How configure is called from the CESM scripts
The CESM scripts access CAM's configure via the script $CAM_ROOT/models/atm/cam/bld/
cam.buildnml.csh. The cam.buildnml.csh script acts as the interface between the CESM
scripts and CAM's configure and build-namelist utilities.

Arguments to configure
All configuration options can be specified using command line arguments to configure and this is the
recommended practice. Options specified via command line arguments take precedence over options
specified any other way.

At the next level of precedence a few options can be specified by setting environment variables. And
finally, at the lowest precedence, many options have hard-coded defaults. Most of these are located in
the files $CAM_ROOT/models/atm/cam/bld/config_files/defaults_*.xml. A few that
depend on the values of other options are set by logic contained in the configure script (a Perl script). The
hard-coded defaults are designed to produce the standard production configurations of CAM.

The configure utility

27

The configure script allows the user to specify compile time options such as model resolution, dynamical
core type, additional compiler flags, and many other aspects. The user can type configure --help
for a complete list of available options.

The options may all be specified with either one or two leading dashes, e.g., -help or --help. The few
options that can be expressed as single letter switches may not be clumped, e.g., -h -s -v may NOT be
expressed as -hsv. When multiple options are listed separated by a vertical bar either version may be used.

CAM configuration
These options will have an effect whether running CAM as part of CESM or running in a CAM standalone
mode:

-[no]age_of_air_trcs Switch on [off] age of air tracers. Default: on
for waccm_phys, otherwise off.

-carma <name> Build CAM with specified CARMA
microphysics model [none | bc_strat |
cirrus | dust | meteor_smoke | pmc |
sea_salt | sulfate | test_detrain
| test_growth | test_passive |
test_radiative | test_swelling |
test_tracers]. Default: none.

-chem <name> Build CAM with specified prognostic
chemistry package [waccm_mozart |
waccm_mozart_sulfur | waccm_ghg
| trop_mozart | trop_mozart_mam3
| trop_mozart_soa | trop_ghg
| trop_bam | trop_mam3 |
trop_mam7 | super_fast_llnl |
super_fast_llnl_mam3 |
trop_strat_soa | trop_strat_mam3
| trop_strat_mam7 | none]. Default:
trop_mam3 if the physics package is cam5,
otherwise default is none.

-clubb_sgs Switch to turn on the CLUBB_SGS package.
Default: Off.

-co2_cycle This option is usually used with the
-ccsm_seq option as part of the
configuration for running biogeochemistry
(BGC) compsets. It modifies the CAM
configuration by increasing the number of
advected constituents by 4. Default: not set.

-comp_intf [mct | esmf] Specify the component interfaces Default:
mct.

-cosp Enable the COSP simulator package. Default:
not set.

-cppdefs <string> A string of user specified CPP defines
appended to Makefile defaults. E.g. -

The configure utility

28

cppdefs '-DVAR1 -DVAR2'. Note that
a string containing whitespace will need to be
quoted.

-dyn [eul | sld | fv | se] Build CAM with specified dynamical core.
Default: fv.

-edit_chem_mech Invokes CAMCHEM_EDITOR to allow the
user to edit the chemistry mechanism file.

-hgrid <name> Specify horizontal grid. For spectral grids use
nlatxnlon where nlat and nlon are the
number of latitude and longitude grid points
respectively in the global Gaussian grid (e.g.,
64x128). For FV grids use dlatxdlon
where dlat and dlon are the grid cell
size in degrees for latitude and longitude
respectively (e.g., 1.9x2.5). For SE grids
(cubed sphere) use neNnpM where N is the
number of elements on an edge of the cube,
and M is the number of Gauss points on the
edge of an element (e.g., ne30np4).

-microphys [mg1 | mg1.5 | rk] Specify the microphysics package. Default:
mg1 if the physics package is cam5,
otherwise rk.

-nadv <n> Set total number of advected species to
<n>. If -nadv is set to a larger number
than is required by the selected physics and
chemistry schemes, then the remainder will
automatically be used for test tracers (N.B.
the namelist variable tracers_flag must
be set to .true. to enable the test tracer
code.) Default: set to the number required by
the selected physics and chemistry schemes.

-nadv_tt <n> Set number of advected test tracers to <n>.
Setting the number of test tracers explicitly
with this option allows build-namelist to
automatically enable the test tracer code
by setting the tracers_flag namelist
variable. Default: 0.

-nlev <n> Set number of vertical layers to <n>. Default:
30 if the physics package is cam5, ideal,
or adiabatic. 26 if the physics package
is cam4. 66 if the chemistry package is
waccm_*. 81 if the -waccmx is used.

-offline_dyn Switch enables the use of offline driver for
FV dycore. Default: not set.

-pbl [uw | hb | hbr | clubb_sgs] PBL package. Default: uw if the physics
package is cam5; clubb_sgs if the -
clubb_sgs switch is set; otherwise hb.

The configure utility

29

-pcols <n> Set maximum number of grid columns in a
chunk to <n>. Default: 16.

-pergro Switch enables building CAM for
perturbation growth tests. Only valid with
cam3 and cam4 physics packages.

-phys [cam3 | cam4 | cam5 | ideal | adiabatic] Physics package. Default: cam5.

-prog_species <list> Comma separated list of prognostic mozart
species packages. Currently available:
DST,SSLT,SO4,GHG,OC,BC,CARBON16

-psubcols <n> Set maximum number of subcolumns in a grid
column to <n>. Default: 1.

-rad [rrtmg | camrt] Radiation package. Default: rrtmg if the
physics package is cam5, otherwise camrt.

-usr_mech_infile <name> Pathname of the user supplied chemistry
mechanism file.

-waccm_phys Switch enables the use of WACCM physics
in any chemistry configuration. Default: Off
unless one of the waccm chemistry options is
chosen then it's automatically turned on.

-waccmx Build CAM/WACCM with WACCM upper
Thermosphere/Ionosphere extended package.

SCAM configuration
-camiop Configure CAM to generate an IOP file that can be used to drive SCAM. This switch

only works with the Eulerian dycore.

-scam Compiles model in single column mode. Only works with Eulerian dycore.

CAM parallelization
-[no]smp Switch on [off] SMP parallelism (OpenMP). This option can be used when building

a model that doesn't contain CICE. It allows building an executable whose thread
count can be set at run time.

-[no]spmd Switch on [off] SPMD parallelism (MPI). This option can be used when building a
model that doesn't contain CICE. It allows building an executable whose task count
can be set at run time.

CAM parallelization when running standalone with CICE
-ntasks <n> This option must be used to specify SPMD parallelism when the CICE

component is present. <n> is the number of MPI tasks. Setting ntasks >
0 implies -spmd. Use -nospmd to turn off linking with an MPI library.
To configure for pure MPI specify "-ntasks N -nosmp". ntasks is

The configure utility

30

used by CICE to determine default grid decompositions which must be
specified at build time.

-nthreads <n> This option must be used to specify SMP parallelism when the CICE
component is present. <n> is the number of OpenMP threads per process.
Setting nthreads > 0 implies -smp. Use -nosmp to turn off compilation
of OMP directives. For pure OpenMP set "-nthreads N -nospmd".
nthreads is used by CICE to determine default grid decomposition which
must be specified at build time.

NOTE: When CAM is running standalone with CICE the default CICE decomposition is determined
from the values of the -ntasks and -nthreads arguments. The user also has the ability to explicitly
set the CICE decomposition using the following four arguments. If any of these arguments is set then ALL
FOUR must be set.

-cice_bsizex <n> CICE block size in longitude dimension. This
size must evenly divide the number of longitude
points in the global grid.

-cice_bsizey <n> CICE block size in latitude dimension. This size
must evenly divide the number of latitude points
in the global grid.

-cice_maxblocks <n> Maximum number of CICE blocks per process.

-cice_decomptype <name> CICE decomposition type [cartesian |
spacecurve | roundrobin].

General options
-cache <name> Name of output cache file. Default: config_cache.xml.

-cachedir <dir> Name of directory where output cache file is written. Default:
CAM build directory.

-ccsm_seq Switch to specify that CAM is being built from within the CESM
scripts. This produces Filepath and CCSM_cppdefs files that
contains only the paths and CPP macros needed to build a library
for the CAM component.

-defaults <name> Specify a configuration file which will be used to supply defaults
instead of one of the config_files/defaults_*.xml
files. This file is used to specify model configuration parameters
only. Parameters relating to the build which are system dependent
will be ignored.

-help | -h Print usage to STDOUT.

-silent | -s Turns on silent mode - only fatal messages printed to STDOUT.

-test Switch on testing of Fortran compiler and linking to external
libraries.

-verbose | -v Turn on verbose echoing of settings made by configure.

-version Echo the repository tag name used to check out this CAM source
tree.

The configure utility

31

Surface components
Options for surface components used in standalone CAM mode:

-ice [cice | sice] Specify the sea ice component. Default:
cice.

-lnd [clm | slnd] Specify the land component. Default: clm.

-ocn [docn | socn | dom | aquaplanet] Specify ocean component. If set to
aquaplanet then the stub ice (sice) and
stubb land (slnd) components are implied.
Default: docn.

-rof [rtm | srof] Specify the river runoff component. Default:
rtm.

CAM standalone build
Options for building CAM via standalone scripts:

-cam_bld <dir> Directory where CAM will be built. This
is where configure will write the output
files it generates (Makefile, Filepath, etc...).
Default: ./

-cam_exe <name> Name of the CAM executable. Default: cam.

-cam_exedir <dir> Directory where CAM executable will be
created. Default: CAM build directory.

-cc <name> User specified C compiler. Default: Depends
on the OS and the Fortran compiler.

-cflags <string> A string of user specified C compiler options
appended to the default options set in
Makefile.

-debug Switch to turn on building CAM with
compiler options for debugging. The specific
options are compiler dependent. These flags
are set in the Makefile.in template file.

-esmf_libdir <dir> Directory containing ESMF library and the
esmf.mk file. If this option is specified
then the external ESMF library will be used
in place of the ESMF-WRF time manager
code which is provided in the CESM source
distribution.

-fc <name> User specified Fortran compiler. Default:
Depends on the OS and whether MPI is
enabled.

-fc_type [pgi | lahey | intel | pathscale |
gnu | xlf]

Type of the Fortran compiler. This argument
is used in conjunction with the -fc argument

The configure utility

32

when the name of the fortran compiler refers
to a wrapper script (e.g., mpif90 or ftn). In
this case the user needs to specify the type of
Fortran compiler that is being invoked by the
wrapper script. Default: Depends on the name
of the Fortran compiler.

-fflags <string> A string of user specified Fortran compiler
options appended to the default options set
in the Makefile. See -fopt to override
optimization flags.

-fopt <string> A string of user specified Fortran compiler
optimization flags. Overrides Makefile
defaults.

-gmake <name> Name of the GNU make program on your
system. Supply the absolute pathname if the
program is not in your path (or fix your path).
This is only needed by configure for running
tests via the -test option.

-lapack_libdir <dir> Directory containing LAPACK library.

-ldflags <string> A string of user specified load options.
Appended to Makefile defaults.

-linker <name> User specified linker. Default: use the Fortran
compiler.

-mpi_inc <dir> Directory containing MPI include files.

-mpi_lib <dir> Directory containing MPI library.

-nc_inc <dir> Directory containing NetCDF include files.

-nc_lib <dir> Directory containing NetCDF library.

-nc_mod <dir> Directory containing NetCDF module files.

-pnc_inc <dir> Directory containing PnetCDF include files.

-pnc_lib <dir> Directory containing PnetCDF library.

-rad_driver Build CAM with the offline radiation driver.
This produces an executable that can only be
used for offline radiation calculations.

-target_os <name> Override the OS setting for cross
platform compilation from the following list
[aix|irix|linux| bgl|bgp]. Default: OS
on which configure is executed as defined by
the Perl $OSNAME variable.

-usr_src <dir1>[,<dir2>[,<dir3>[...]]] Directories containing user source code. Note
that these directories will also be searched
for modified versions of the files needed by

The configure utility

33

the build-namelist script, e.g., the namelist
definition and use case files.

Environment variables recognized by configure
The following environment variables are recognized by configure. Note that the command line arguments
for specifying this information always takes precedence over the environment variables.

CASEROOT Directory where a CESM case is set up. This is only used when building
from the CESM scripts to add the SourceMods directory for CAM to the
Filepath file.

ESMF_LIBDIR Directory containing the ESMF library.

INC_MPI Directory containing the MPI include files.

INC_NETCDF Directory containing the NetCDF include files.

INC_PNETCDF Directory containing the PnetCDF include files.

LAPACK_LIBDIR Directory containing the LAPACK library.

LIB_MPI Directory containing the MPI library.

LIB_NETCDF Directory containing the NetCDF library.

LIB_PNETCDF Directory containing the PnetCDF library.

MCT_LIBDIR Directory containing the MCT libraries.

MOD_NETCDF Directory containing the NetCDF module files.

34

Appendix B. The build-namelist utility
The build-namelist utility builds namelists (and on occasion other types of input files) which specify run-
time details for CAM and the components it's running with in standalone mode. When executed from the
CESM scripts it only produces a namelist file for the CAM component (in the file atm_in), and a namelist
file for control of dry deposition which is shared by CAM and CLM (in the file drv_flds_in).

The task of constructing a correct namelist has become extremely complex due to the large number of
configurations supported by CAM. Editing namelists by hand is an extremely fragile process due to the
number of variables that need to be set, and to the many interdependencies among them. We stronly
discourage editing namelists by hand. All customizations of the CAM namelist are possible by making
use of the build-namelist command line options.

Some of the important features of build-namelist are:

• All valid namelist variables are known to build-namelist. So an invalid variable specified by the user
(supplied either by the -infile or -namelist options) will cause build-namelist to fail with an
error message telling which namelist variable is invalid. This is a big improvement over a runtime failure
caused by an invalid variable which typically gives no hint as to which variable caused the problem.

• In addition to knowing all valid variable names and their types, build-namelist also knows which
namelist group each variable belongs to. This means that the user only needs to specify variable names
to build-namelist and not the group names. The -infile and -namelist options still require valid
namelist syntax as input, but the group name is ignored. So all variables can be put in a single group
with an arbitrary name, for example, "&xxx ... /" where "xxx" is the namelist group name.

• Since build-namelist knows all namelist variables specified by the user it is able to do consistency
checking. In general however, build-namelist assumes that the user is the expert and will not override
a user specification unless there is a major inconsistency, for example if variables have been set to use
parameterizations which can not be run at the same time.

• All configurations have namelist variables that must be specified, and build-namelist has a mechanism
to provide default values for these variables. When an appropriate default value cannot be found then
build-namelist will fail with an informative message.

• When running a configuration for the first time there are often many input datasets that may not be in
the local input data directory. In order to facilitate getting the required datasets build-namelist has an
option, -test, that can be used to produce a complete list of required datasets and report status of
whether or not they are present in the local directory. This list can then be used to obtain the needed
datasets from the CESM SVN input data repository.

One required input for build-namelist is a configuration cache file produced by a previous invocation of
configure (config_cache.xml by default). build-namelist looks at this file to determine the features
of the CAM executable, such as the dynamical core and horizontal resolution, that affect the default
specifications for namelist variables. The default values themselves are specified in the file $CAM_ROOT/
models/atm/cam/bld/namelist_files/namelist_defaults_cam.xml, and in the use
case files located in the directory $CAM_ROOT/models/atm/cam/bld/namelist_files/
use_cases/.

The other required input for build-namelist is the root directory for the input datasets. This is required since
nearly all input files must be specified using absolute filepaths, but the defaults are stored as filepaths which
are relative to the root directory. It is expected that the actual location of the root directory is something
that will be resolved at runtime. The way this is done is to either specify it using the -csmdata argument,
or to set the environment variable CSMDATA.

The build-namelist utility

35

The methods for setting the values of namelist variables, listed from highest to lowest precedence, are:

1. using specific command-line options, e.g., -case and -runtype,

2. using the -namelist option,

3. setting values in a file specified by -infile,

4. specifying a -use_case option,

5. setting values in the namelist defaults file.

The first four of these methods for specifying namelist variables are the ones available to the user without
requiring code modification. Any namelist variable recognized by CAM can be modified using method 2
or 3. The final two methods represent defaults that are hard coded as part of the code base.

Options to build-namelist
To get a list of all available options, type build-namelist --help. Available options are also listed
just below.

The following options may all be specified with either one or two leading dashes, e.g., -help or --
help. The few options that can be expressed as single letter switches may not be clumped, e.g., -h -s
-v may NOT be expressed as -hsv. When multiple options are listed separated by a vertical bar either
version may be used.

-case <name> Case identifier up to 80 characters. This value
is used to set the case_name variable in the
driver namelist. Default: camrun

-cice_nl <namelist> Specify namelist settings for CICE directly
on the commandline by supplying a string
containing FORTRAN namelist syntax, e.g.,
-cice_nl "&ice histfreq=1 /".
This namelist will be passed to the invocation
of the CICE build-namelist via its -
namelist argument.

-config <filepath> Read the specified configuration cache file
to determine the configuration of the CAM
executable. Default: config_cache.xml.

-config_cice <filepath> Filepath of the CICE config_cache file. This
filepath is passed to the invocation of the
CICE build-namelist. Only specify this to
override the default filepath which was set
when the CICE configure was invoked by the
CAM configure.

-csmdata <dir> Root directory of CESM input data. Can also
be set by using the CSMDATA environment
variable.

-dir <dir> Directory where output namelist files for each
component will be written, i.e., atm_in,

The build-namelist utility

36

drv_in, ice_in, lnd_in and ocn_in.
Default: current working directory.

-help | -h Print usage to STDOUT.

-ignore_ic_date Ignore the date attribute of the initial
condition files when determining the default.

-ignore_ic_year Ignore just the year part of the date attribute
of the initial condition files when determining
the default.

-infile <filepath> Specify a file containing namelists to read
values from.

-inputdata <filepath> Writes out a list of pathnames for required
input datasets to the specified file.

-namelist <namelist> Specify namelist settings directly
on the commandline by supplying
a string containing FORTRAN
namelist syntax, e.g., -namelist
"&atm stop_option='ndays'
stop_n=10 /"

-ntasks <n> Specify the number of MPI tasks to be used
by the run. This is only used to set a default
decomposition for the FV dycore, i.e., the
npr_yz variable.

-runtype [startup|continue|branch] Type of simulation. Default: startup.

-silent | -s Turns on silent mode - only fatal messages
issued.

-test Enable checking that input datasets exist on
local filesystem. This is also a convenient
way to generate a list of the required input
datasets for a model run.

-use_case <name> Specify a use case.

-verbose | -v Turn on verbose echoing of informational
messages.

-version Echo the source code repository tag name
used to check out this CAM distribution.

Environment variables used by build-namelist
The environment variables recognized by build-namelist are presented below.

CSMDATA Root directory of CESM input data. Note that the commandline
argument -csmdata takes precedence over the environment
variable.

The build-namelist utility

37

OMP_NUM_THREADS If values of the specific variables that set the thread count
for each component, i.e., atm_nthreads, cpl_nthreads,
ice_nthreads, lnd_nthreads, or ocn_nthreads, are set
via the -namelist, or -infile options, then these values
have highest precedence. The OMP_NUM_THREADS environment
variable has next highest precedence for setting any of the
component specific thread count variables. Lowest precedence for
setting these variables is the value of nthreads from the configure
cache file.

CAM Namelist variables
A searchable (or browsable) page containing all CAM namelist variables is here [/cgi-bin/eaton/namelist/
nldef2html-cam5_3].

/cgi-bin/eaton/namelist/nldef2html-cam5_3
/cgi-bin/eaton/namelist/nldef2html-cam5_3
/cgi-bin/eaton/namelist/nldef2html-cam5_3

38

References
[Conley et al. [2013]] Conley, A.J., J.-F. Lamarque, F. Vitt, W.D. Collins, and J. Kiehl. PORT, a CESM tool for the

diagnosis of radiative forcing , Geoscientific Model Development, 6, 469-476, doi:10.5194/gmd-6-469-2013
[http://dx.doi.org/10.5194/gmd-6-469-2013] , 2013.

[Hurrell et al. [2008]] Hurrell, J.W., James J. Hack, Dennis Shea, Julie M. Caron, and James Rosinski. A New Sea
Surface Temperature and Sea Ice Boundary Dataset for the Community Atmosphere Model , Journal of
Climate, 21, 5145-5153, doi:10.1175/2008JCLI2292.1 [http://dx.doi.org/10.1175/2008JCLI2292.1] , 2008.

[Taylor et al. [2000]] Taylor, K.E., David Williamson, and Francis Zwiers. The Sea Surface Temperature and
Sea-Ice Concentration Boundary Conditions for AMIP II Simulations , PCMDI Report No. 60, UCRL-
JC-125597, http://www-pcmdi.llnl.gov/publications/pdf/60.pdf [http://www-pcmdi.llnl.gov/publications/
pdf/60.pdf] , 2000.

http://dx.doi.org/10.5194/gmd-6-469-2013
http://dx.doi.org/10.5194/gmd-6-469-2013
http://dx.doi.org/10.1175/2008JCLI2292.1
http://dx.doi.org/10.1175/2008JCLI2292.1
http://www-pcmdi.llnl.gov/publications/pdf/60.pdf
http://www-pcmdi.llnl.gov/publications/pdf/60.pdf
http://www-pcmdi.llnl.gov/publications/pdf/60.pdf

