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Chapter 1. Introduction

The Community Atmosphere Model version CAM-5.3 is released as the atmosphere component of the
Community Earth System Model version CESM-1.2. Itisthelatest in aseriesof global atmosphere models
whose development isguided by the Atmosphere Model Working Group [/working_groups/Atmosphere/]
(AMWG) of the Community Earth System Model [/models/cesm1.2/] (CESM) project. CAM is used as
both a standalone model and as the atmospheric component of the CESM. CAM has along history of use
as a standalone model by which we mean that the atmosphere is coupled to an active land model (CLM),
athermodynamic only seaice model (aspecial configuration of CICE), and a data ocean model (DOCN).
When one speaks of "doing CAM simulations' theimplicationisthat it's a standalone configuration that is
being used. When CAM iscoupled to active ocean and seaice modelsthen werefer to the model as CESM.

CAM provides a framework for running the "Whole Atmosphere” configurations; WACCM, and
WACCM-X. To run CAM in a WACCM or WACCM-X configuration the user is referred to the
CESM-1.2 User's Guide [/model s/cesm1.2/cesm/doc/usersguide/bookl.html].

In versions of CAM before 4.0 the driver for the standal one configuration was completely separate code
from what was used to coupl e the components of the CCSM. One of the most significant software changes
in CAM-4.0 was a refactoring of how the land, ocean, and sea ice components are called which enabled
the use of the CCSM coupler to act as the CAM standalone driver (this also depended on the complete
rewritting of the CCSM coupler to support sequential execution of the components). Hence, for the CESM 1
model, just as for CCSM4 before it, it is accurate to say that a CAM standal one configuration is nothing
more than aspecia configuration of CESM in which the active ocean and seaice components are replaced
by data ocean and thermodynamic sea ice components.

Since the CAM standalone model is just a special configuration of CESM it can be run using the CESM
scripts. Thisis done by using one of the "F" compsets and is described in the CESM-1.2 User's Guide [/
model s/cesml.2/cesm/doc/usersguide/book1.html]. The main advantage of running CAM viathe CESM
scripts is to leverage the high level of support that those scripts provide for doing production runs of
predefined experiments on supported platforms. The CESM scripts do things like: setting up reasonable
runtime environments; automatically retrieving required input datasets from an SV N server; and archiving
output files. But CAM isused in alot of environments where the complexity of production ready scripts
isnot necessary. In these instances the flexibility and simplicity of being ableto completely describe arun
using a short shell script is avaluable option. In either case though, the ability to customize a CAM build
or runtime configuration depends on being able to use the utilities described in this document. Any build
configuration can be set up via appropriate commandline arguments to CAM's configur e utility, and any
runtime configuration can be set up with appropriate arguments to CAM's build-namelist utility. I1ssues
that are specific to running CAM from the CESM scripts will not be discussed in this guide. Rather we
focus on issuesthat areindependent of which scriptsare used to run CAM, athough thereis some attention
given in this guide to the construction of simple scripts designed for running CAM in its standalone mode.

Changes from previous release

Thisinformation is available from the CESM-1.2 home page [/models/cesm1.2/].

* New science featuresin CAM-5.3 [/model s/cesml.2/tags/cesml 2/whatsnew_science.html].

* New software featuresin CAM-5.3 [/model s/cesml.2/tags/cesml_2/whatsnew_software.html].
» Summary of answer changes [/models/cesm1.2/tags/cesml_2/answerchanges.html].

» Known problems [/models/cesm1.2/tags/cesm1_2/knownproblems.html].
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Introduction

Getting Help -- Other User Resources
The CAM Web Page

The central source for information on CAM isthe CAM web page [/model s/cesm1.2/cam].

The CESM Bulletin Board

The CESM Bulletin Board is a moderated forum for rapid exchange of information, ideas, and topics
of interest relating to all components of the CESM. This includes sharing software tools, datasets,
programming tips and examples, as well as discussions of questions, problems and workarounds. The
primary motivation for the establishment of this forum is to facilitate and encourage communication
between the users of the CESM around the world. This bulletin board will also be used to distribute
announcements related to CESM.

The CESM Bulletin Board is here: http://bb.cgd.ucar.edu/.
Reporting bugs

If a user should encounter bugs in the code (i.e., it doesn't behave in away in which the documentation
says it should), the problem should be reported electronically to the CESM Bulletin Board [http://
bb.cgd.ucar.edu/]. When writing a bug report the guiding principle should be to provide enough
information so that the bug can be reproduced. The following list suggests the minimal information that
should be contained in the report:

1. The version number of the CCSM or CESM release that CAM is part of .

2. Thearchitecture on which the codewas built. Include relevent information such asthe Fortran compiler,
MPI library, etc.

3. The configure commandline. If it is this command that is failing, then report the output from this
command. It can also be very useful to run this command with the - v option to turn on verbose output.

4. The build-namelist commandline. If it isthis command that isfailing, then report the output from this
command. It can also be very useful to run this command with the - v option to turn on verbose outpuit.

5. Model printout. Ideally thiswould contain astack trace. But it should at |east contain any error messages
printed to the output log.

Please note that CAM is aresearch tool, and not all features contained in the code base are supported.
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Chapter 2. Building and Running CAM

Thischapter describes how to build and run CAM inits standal one configuration. We do not provide scripts
that are setup to work out of the box on a particular set of platforms. If you would like thislevel of support
then consider running CAM from the CESM scripts (see CESM-1.2 User's Guide [/model s/cesm1.2/cesm/
doc/usersguide/bookl.html]). We do however provide some examples of simple run scripts which should
provide a useful starting point for writing your own scripts (see the section called “ Sample Run Scripts’).

In order to build and run CAM the following are required:

» The source tree. CAM-5.3 is distributed with CESM-1.2. To obtain the source code go to the section
"Acquiring the Code" on the CESM Home Page [/models/cesm1.2/index.html]. When we refer to the
root of the CAM sourcetree, thisisthe samedirectory astheroot of the CESM sourcetree. Thisdirectory
is referred to throughout this document as $CAM_ROOT.

» Perl (version 5.4 or later).
* A GNU version of the make utility.
« Fortran and C compilers. The Fortran compiler needs to support at least the Fortran95 standard.

* A NetCDF library (version 4.1.3 or later) that has the Fortran APIs built using the same Fortran
compiler that is used to build the rest of the CAM code. This library is used extensively by CAM
both to read input datasets and to write the output datasets. The NetCDF source code is available
here [http://www.unidata.ucar.edu/downl cads/netcdf/]. We have updated the required NetCDF library
version from 3.6 to 4.1.3 due to a recently discovered bug which affects all previous versions of the
NetCDF library. Thebug only occursin special circumstancesthat are not that easy to replicate, however
theresult isthat corrupt filesare silently created. A more complete description of the bug ishere[https.//
www.unidata.ucar.edu/jira/browse/NCF-22].

* Input datasets. The required datasets depend on the CAM configuration. Determining which datasets
arerequired for any configuration is discussed in the section called “ Building the Namelist”. Acquiring
those datasets is discussed in the section called “ Acquiring Input Datasets”.

To build CAM for SPMD execution it will also be necessary to have an MPI library (version 1 or later).
As with the NetCDF library, the Fortran API should be build using the same Fortran compiler that is
used to build the rest of CAM. Otherwise linking to the library may encounter difficulties, usually due to
inconsistencies in Fortran name mangling.

Building and running CAM takes place in the following steps:
1. Configure model

2. Build model

3. Build namelist

4. Execute model

Configuremodel.  This step is accomplished by running the configur e utility to set the compile-time
parameters such as the dynamical core (Eulerian Spectral, Semi-Lagrangian Spectral, Finite Volume, or
Spectral Element), horizontal grid resolution, and the type of parallelism to employ (shared-memory and/
or distributed memory). The configure utility is discussed in Appendix A, The configure utility.

Build model.  This step includes compiling and linking the executabl e using the GNU make command
(gmake). configur e creates aMakefilein the directory where the build isto take place. The user then need
only change to this directory and execute the gmake command.
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Build namelist.  This step is accomplished by running the build-namelist utility, which supports a
variety of options to control the run-time behavior of the model. Any namelist variable recognized by
CAM can be changed by the user via the build-namelist interface. There is also a high level "use case”
functionality which makes it easy for the user to specify a consistent set of namelist variable settings for
running particular types of experiments. The build-namelist utility isdiscussed in Appendix B, The build-
namelist utility.

Execute model. This step includes the actual invocation of the executable. When running using
distributed memory parallelism this step requires knowledge of how your machineinvokes (or "launches")
MPI executables. When running with shared-memory parallelism (using OpenMP) you may also set the
number of OpenMP threads. On most HPC platforms access to the compute resource is through a batch
gueue system. The sample run scripts discussed in the section called “ Sample Run Scripts’ show how to
set the batch queue resources on several HPC platforms.

Sample Interactive Session

The following sections present an interactive C shell session to build and run a default version of CAM.
Most often these steps will be encapsulated in shell scripts. An important advantage of using a script is
that it acts to document the run you've done. Knowing the source code tree, and the configur e and build-
namelist commands provides all the information needed to replicate arun.

For the interactive session the shell variable cantf g isset to the directory in the source tree that contains
the CAM configure and build-namelist utilities ($CAM_ROOT/models/atm/cam/bl d).

Much of the exanple code in this document is set off in sections |ike this.
Many exanples refer to files in the distribution source tree using
filepaths that are relative to distribution root directory, which we
denote, using a UNI X shell syntax, by $CAM ROOT. The notation indicates
that CAM ROOT is a shell variable that contains the filepath. This could
just as accurately be referred to as $CCSMROOT since the root directory of
the CESM distribution is the same as the root of the CAMdistribution
which is contained within it.

Configuring CAM for serial execution

We start by changing into the directory in which the CAM executable will be built, and then setting
the environment variables| NC_NETCDF and LI B_NETCDF which specify the locations of the NetCDF
include files and library. This information is required by configure in order for it to produce the
Makef i | e. The NetCDF library isrequire by all CAM builds. The directories given are just examples;
the locations of the NetCDF include files and library are system dependent. The information provided by
these environment variables could alternatively be provided via the commandline arguments - nc_i nc
and-nc_lib.

NOTE: A common problem isto encounter build failures due to specifying a NetCDF library which
was built with a different Fortran compiler than the one used to build CAM. Consult your system's
documentation (or some other knowledgeable source) to find the location of the NetCDF library which
was built with the Fortran compiler you intend to use.

% cd /work/user/camtest/bld
% setenv | NC_NETCDF /usr/ |l ocal/include
% setenv LI B NETCDF /usr/local/lib
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Next we issue the configure command (see the example just below). The argument - dyn f v specifies
using the FV dynamica core which is the default for CAMS5, but we recommend always adding the
dynamical core (dycore for short) argument to configure commands for clarity. The argument - hgri d
10x15 specifiesthe horizontal grid. Thisisthe coarsest grid available for the FV dycorein CAM and is
often useful for testing purposes.

We recommend using the- t est option the first time CAM is built on any machine. Thiswill check that
the environment is properly set up so that the Fortran compiler works and can successfully link to the
NetCDF and MPI (if SPMD is enabled) libraries. Furthermore, if the configuration isfor serial execution,
then the tests will include both build and run phases which may be useful in exposing run time problems
that don't show up during the build, for example when shared libraries are linked dynamically. If any tests
fail then it is useful to rerun the configure command and add the - v option which will produce verbose
output of all aspects of the configuration process including the tests. If the configuration is for an SPMD
build, then no attempt to run the tests will be made. Typically MPI runs must be submitted to a batch
gueue and are not enabled from interactive sessions. Also the method of launching an MPI job is system
dependent. But the build and static linking will still be tested.

% $cancfg/ configure -dyn fv -hgrid 10x15 -nospnd -nosnp -test

| ssuing command to the CICE configure utility:
$CAM ROOT/ nodel s/icel/ cicel/ bl d/ configure -hgrid 10x15 -cice_npde prescribed \
-ntr_aero 0 -nx 24 -ny 19 -bsizex 6 -bsizey 19 -maxbl ocks 4 -deconptype bl krobin
-cache config cache _cice.xm -cachedir /work/user/camtest/bld

Cl CE configure done.

MCT configure is done.

creating /work/user/camtest/bld/Filepath

creating /work/user/camtest/bld/ Makefile

creating /work/user/camtest/bld/config.h

creating /work/user/camtest/bld/ config_cache. xn

Looking for a valid GNU make... using gnake

Testing for Fortran 90 conpati bl e conpiler... using pgf95

Test linking to NetCDF library... ok

CAM confi gure done.

The first line of output from the configure command is an echo of the system command that CAM's
configure issues to invoke the CICE configure utility. CICE's configure is responsible for setting the
values of the CPP macros that are needed to build the CICE code.

After the CICE configure is complete the MCT configure script is executed to create the Makefile for
building MCT as a separate library. There is a status line output to indicate success of that process.

The next four lines of output inform the user of the files being created by configure. All these files except
for the cache file are required to be in the CAM build directory, so it is generally easiest to be in that
directory when configureisinvoked.

The output from the - t est option tells us that gmake isa GNU Make on this machine; that the Fortran
compiler is pgf95; and that code compiled with the Fortran compiler can be successfully linked to the
NetCDF library. The CAM configure script is the place where the default compilers are specified. On
Linux systems the default is pgf95. Finally, since thisis a seria configuration no test for linking to the
MPI library was done.

Specifying the Fortran compiler

In the previous section the configure command was issued without specifying which Fortran compiler
to use. For that to work we were depending on the CAM configure script to select a default compiler.
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One of the differences between the CAM standalone build and a build using the CESM scripts is that
CAM's configur e provides defaults based on the operating system name (as determined by the Perl internal
variable $OSNAME), while the CESM scripts require the user to specify a specific machine (and compiler
if the machine supports more than one) as an argument to the create_newcase command.

The CAM makefile currently recognizes the following operating systems and compilers.

AlX xIf95_r, mpxIfo5 r
Linux pgf95 (thisis the default)
1f95
ifort

gfortran (has had minimal testing)

pathfo0 (has had minimal testing)

Darwin xIf95 _r, mpxIf95 r, ifort
BGL birts xI1f95
BGP mpixIf95_r

The abovelist containstwo IBM Blue Gene machines; BGL and BGP. The executables on these machines
are produced by cross compilation and hence the configure script is not able to determine the machine for
which the build isintented. In this case the user must supply this information to configur e by using the -
t ar get _os option with the values of either bgl or bgp.

On aLinux platform several compilers are recognized with the default being pgf95. It is assumed that the
compiler to be used isin the user's path (i.e., in one of the directories in the PATH environment variable).
If itisn't thenthe-t est option will issue an error indicating that the compiler was not found.

Suppose for example that one would like to use the Intel compiler on alocal Linux system. The CAM
makefilerecognizesifort asthe name of the Intel compiler. Toinvokethiscompiler usethe- f ¢ argument
to configure. The following example illustrates the output you get when the compiler you ask for isn't
in your PATH:;

% $cancfg/configure -fc ifort -dyn fv -hgrid 10x15 -nospnd -nosnp -test

| ssuing command to the CICE configure utility:
$CAM ROOT/ nodel s/icel/ cicel/ bl d/ configure -hgrid 10x15 -cice_npbde prescribed \
-ntr_aero 0 -ntasks 1 -nthreads 1 -cache config cache _cice.xm \
-cachedir /work/user/camtest/bld

ClI CE configure done.

FAI LURE: MCT configure

In previous CAM versions this problem would be caught by the - t est option, but with the addition of
MCT's configur e the problem is now detected there. By default MCT will be build in asubdirectory of the
build directory named nct . That directory will contain afile, confi g. | og, which should be examined
to track down the cause of the failure. In this case the file contains the message:

$CAM ROOT/ nodel s/ util s/ nmct/configure: line 3558: ifort: conmmand not found
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This meansthat the PATH environment variable has not been correctly set. Thefirst thing to try isto verify
the directory that contains the compiler, and then to prepend this directory name to the PATH environment
variable.

NOTE:  We have made progress porting CAM to the gfortran compiler, but it is still not regularly
tested or used for production work.

Dealing with compiler wrappers

Another instance where the user needs to supply information about the Fortran compiler type to configure
iswhen the compiler isbeing invoked by awrapper script. A common example of thisisusing the mpif90
command to invoke the Fortran compiler that was used to build the MPI libraries. This facilitates correct
compilation and linking with the MPI libraries without the user needing to add the required include and
library directories, or library names. The same benefit is provided by the ftn wrapper used on Cray XT
and XE systems. In the usual case that a Linux OS is being used, since the CAM makefile will not
recognize these compiler names, it will assume that the default compiler is being used, and thus will
supply compiler arguments that are appropriate for pgf90. The compilation will fail if pgfo0 is not the
compiler being invoked by the wrapper script (invoking configurewith the- t est option is agood way
to catch this problem). The way to specify which Fortran compiler is being invoked by awrapper scriptis
viathe - f ¢c_t ype argument to configure. This argument takes one of the values pgi , | ahey, i ntel ,
pat hscal e, gnu, or x| f.

CAM's configur e script attempts to determine the compiler type when a compiler specific name is used.
It does so by a regular expression match against the unique part of specific compiler names (e.g., any
compiler name matching 'pgf' will be given the default type of pgi). If the default is wrong then the user
will need to manually override the default via setting the - f ¢_t ype argument.

Configuring CAM for parallel execution

Before moving on to building CAM we address configuring the executable for parallel execution. But
beforetalking about configuration specificslet'sbriefly discussthe parallel execution capabilitiesof CAM.

CAM makes use of both distributed memory parallelism implemented using MPI (referred to
throughout this document as SPMD [http://en.wikipedia.org/wiki/SPMD]), and shared memory
paralelism implemented using OpenMP (referred to as SMP [http://en.wikipedia.org/wiki/
Symmetric_multiprocessing]). Each of these parallel modes may be used independently of the other, or
they may be used at the same time which we refer to as "hybrid mode". When talking about the SPMD
mode we usually refer to the MPI processes as "tasks", and when talking about the SMP mode we usually
refer to the OpenM P processes as "threads'. A feature of CAM whichisvery helpful in code development
work isthat the simulation results are independent of the number of tasks and threads used.

Now consider configuring CAM to run in pure SPMD mode. Prior to the introduction of CICE asthe sea
ice model SPMD was turned on using the - spnd option. But if wetry that now we find the following:

% $cancfg/ configure -dyn fv -hgrid 10x15 -spmd -nosnp

** ERROR: If Cl CE deconposition paraneters are not specified, then
* -ntasks must be specified to determine a default deconposition
*x for a pure MPl run. The setting was: ntasks=

A requirement of the CICE model is that its grid decomposition (which is independent of CAM's
decomposition even when the two models are using the same horizontal grid) must be specified at build
time. In order for CICE's configur e to set the decomposition it needs to know how much parallelism is
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going to be used. This information is provided by specifying the number of MPI tasks that the job will
use via setting the - nt asks argument.

NOTE: Thedefault CICE decomposition can be overridden by setting it explicitly using the configure
options provided for that purpose.

When running CAM in SPMD mode the build procedure must be able to find the MPI include files and
library. The recommended method for doing thisisto use scripts provided by the M Pl installation to invoke
the compiler and linker. On Linux systems a common name for this script is mpif90. The CAM Makefile
does not currently use this script by default on Linux platforms, so the user must explicitly specify it on
the configur e commandline using the - f ¢ argument:

% $cancfg/configure -fc npif90 -fc_type pgi -cc npicc -dyn fv -hgrid 10x15 -nt asks
| ssuing command to the CICE configure utility:
$CAM ROOT/ nodel s/icel/ cicel/ bl d/ configure -hgrid 10x15 -cice_npde prescribed \
-ntr_aero 0 -ntasks 6 -nthreads 1 -cache config cache _cice.xm \
-cachedir /work/user/camtest/bld
Cl CE configure done.
MCT configure is done.
creating /work/user/camtest/bld/Filepath
creating /work/user/camtest/bld/ Makefile
creating /work/user/camtest/bld/config.h
creating /work/user/camtest/bld/config cache.xm
Looking for a valid GNU nmake... using gnake
Testing for Fortran 90 conpatible conpiler... using nmpif90
Test linking to NetCDF library... ok
Test linking to MPl library... ok
CAM confi gure done.

Notice that the number of tasks specified to CAM's configur e is passed through to the commandline that
invokes the CICE configure. Generally any number of tasks that is appropriate for CAM to use for a
particular horizontal grid will also work for CICE. But it is possible to get an error from CICE at this point
in which case either the number of tasks requested should be adjusted, or the options that set the CICE
decomposition explicitly will need to be used.

NOTE: Theuseof the- nt asks argument to configureimplies building for SPMD. This means that
an MPI library will berequired. Hence, the specification - nt asks 1 isnot the same asbuilding for serial
execution which isdoneviathe- nospnd option and does not requireafull MPI library. (Implementation
detail: when building for serial mode a special serial MPI library is used which basically provides a
complete MPI API, but doesn't do any message passing.)

Next consider configuring CAM to run in pure SMP mode. Similarly to SPMD mode, prior to the
introduction of the seaice component CICE the SMP mode was turned on using the- snp option. But with
CAMS that will result in the same error from CICE that we obtained above from attempting to use - spnd.
If we are going to run the CICE code in parallel, we need to specify up front how much parallelism will
be used so that the CICE configur e utility can set the CPP macros that determine the grid decomposition.
We specify the amount of SMP parallelism by setting the - nt hr eads option as follows:

% $cancfg/ configure -dyn fv -hgrid 10x15 -nospnd -nthreads 6 -test

I ssuing command to the CICE configure utility:
$CAM ROOT/ model s/ i cel/cicel/ bl d/ configure -hgrid 10x15 -ci ce_node prescribed \
-ntr_aero 0 -ntasks 1 -nthreads 6 -cache config_cache_cice.xm \
-cachedir /work/user/camtest/bld
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ClI CE configure done.

We see that the number of threads has been passed through to the CICE configur e command.

NOTE: The use of the - nt hr eads argument to configure implies building for SMP. This means
that the OpenMP directives will be compiled. Hence, the specification - nt hr eads 1 is not the same
as building for serial execution which is done via the - nosnp option and does not require a compiler
that supports OpenMP.

Finally, to configure CAM for hybrid mode, simply specify both the - nt asks and - nt hr eads
arguments to configure.

Building CAM

Once configureis successful, build CAM by issuing the make command:

% gmake -j2 >& nake. out

Theargument - j 2 isgivento alow aparallel build using 2 processes. The optimal number of processes
to use depends on the compute resource available. There is a lot of available parallelism in the build
procedure, so using 16 or even 32 processes may speed things up considerably. Note however that the
build happensin shared (not distributed) memory. So specifying more processes than there are processors
in a shared memory node is generally not helpful (although the presence of hyperthreading or SMT on a
node may provide an advantage to specifying twice the number of processors).

It is useful to redirect the output from make to a file for later reference. This file contains the exact
commands that were issued to compile each file and the final command which links everything into
an executable file. Relevant information from this file should be included when posting a bug report
concerning a build failure.

Building the Namelist

Thefirst step in the run procedure is to generate the namelist files. The safest way to generate consistent
namelist settingsisviathe build-namelist utility. Even in the case where only a slight modification to the
namelist is desired, the best practice is to provide the modified value as an argument to build-namelist
and allow it to actually generate the namelist files.

NOTE: The default configuration of CAM using the canb physics package requires that about 60
datasets and dozens of parameter values be specified in order to run correctly. Trying to manage namelists
of that complexity by hand editing files is extremely error prone and is strongly discouraged. User
modifications to the default namelist settings can be made in a number of ways while still letting build-
namelist actually generatethefinal namelist. Inparticular, the- namel i st ,-i nfil e,and- use_case
arguments to build-namelist are all mechanisms by which the user can override default values or specify
additional namelist variables and still allow build-namelist to do the error and consistency checking which
makes the namelist creation process more robust.

Thefollowing interactive C shell session builds adefault namelist for CAM. We assume that a successful
execution of configure was performed in the build directory as discussed in the previous sections. Thisis
an essential prerequisitebecausetheconf i g_cache. xm fileproduced by configureisarequiredinput
file to build-namelist. One of the responsibilities of build-namelist is to set appropriate default values
for many namelist variables, and it can only do thisif it knows how the CAM executable was configured.
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That information is present in the cache file. Asin the previous section the shell variable cancf g is set
to the CAM configuration directory ($CAM_ROOT/model s/atm/cam/bld).

We begin by changing into the directory where CAM will be run. It is usually convenient to have the run
directory be separate from the build directory. Possibly a number of different runs will be done that each
need to have a separate run directory for the output files, but will al use the same executable file from a
common build directory. It is, of course, possible to execute build-namelist in the build directory since
that's where the cache file is and so you don't need to specify to build-namelist where to find that file (it
looksin the current working directory by default). But then, assuming you plan to run CAM in adifferent
directory, al the files produced by build-namelist need to be copied to the run directly. If you're running
configure and build-namelist from a script, then you need to know how to specify the filenames for the
files that need to be copied. For this reason it's more robust to change to the run directory and execute
build-namelist there. That way if there's a change to the files that are produced, your script doesn't break
due to the files not all getting copied to the run directory.

Next we set the CSMDATA environment variable to point to the root directory of the tree containing the
input data files. Note that thisis arequired input for build-namélist (this information may alternatively
be provided using the - csndat a argument). If not provided then build-namelist will fail with an
informative message. Theinformation isrequired because many of the namelist variables have values that
are absolute filepaths. These filepaths are resolved by build-namelist by prepending the CSMDATA root
to the relative filepaths that are stored in the default values database.

Thebuild-namelist commandline containsthe- conf i g argument which isused to point to the cachefile
which was produced in the build directory. It also containsthe - t est argument, explained further below.

% cd /wor k/user/camt est
% set env CSMDATA /fs/cgd/ csm i nput dat a

% $cancf g/ buil d-namelist -test -config /work/user/camtest/bld/config_cache.xnl

Witing CICE nanelist to ./ice_in

Witing RTMnanmelist to ./rof _in

Witing DOCN nanelist to ./docn_ocn_in

Witing DOCN streamfile to ./docn.streamtxt
Witing CLMnanelist to ./Ind_in

Witing driver namelist to ./drv_in

CAMwiting dry deposition nanelist to drv_flds_in
Witing ocean conponent nanelist to ./docn_in
CAMwiting nanelist to atm.in

Checki ng whet her input datasets exist locally...

X -- found depvel file = /fs/cgd/csnlinputdatal/atmcanfchenitrop_nozart/dvel/depv

-- found tracer_cnst _filelist = /fs/cgd/csminputdatal/atm cam chenltrop_nozart _
-- found tracer_cnst_datapath = /fs/cgd/csminputdatal/atm can chenltrop_nozart

f ound
f ound
f ound

depvel _Ind file = /fs/cgd/csnlinputdatal/atmcanlchem trop_nozart/dvel /
xs_long file = /fs/cgd/csnlinputdatal/atmwaccm phot/tenp_prs_Gr200nm |
rsf_file = /fs/cgd/csnlinputdatal/atmwaccm phot/RSF_GI200nm v3. 0_c0804

-- found climsoilw file = /fs/cgd/ csm i nputdata/atnlcam chem trop_nozart/dvel/

-- found exo_coldens_file = /fs/cgd/csnlinputdatal/atm canlchem trop_nozart/phot
found tracer_cnst_file = /fs/cgd/csnlinputdatal/atmcanfchenitrop_nozart_aero

-- found season_wes_file = /fs/cgd/ csm i nputdata/atnlcam chem trop_nozart/dvel/

-- found solar_data file = /fs/cgd/ csm i nputdata/atnicam sol ar/sol ar_ave_sc19-s

-- found soil _erod = /fs/cgd/csninputdatal/atmcanfdst/dst_10x15_c090203. nc

-- found bndtvs = /fs/cgd/csnlinputdatal/atmcanfsst/sst_HadO Bl _bc_10x15 climc

RAAIARARARARARAFARAIIARIR

f ound
f ound
f ound

focndomain = /fs/cgd/ csnm i nputdata/ at m camf ocnfrac/ domai n. canmocn. 10x15
tropopause_clino_file = /fs/cgd/ csm i nputdata/atnlcam chem trop_nozart
fpftcon = /fs/cgd/ csminputdatal/lnd/cl nm/ pftdatalpft-physiol ogy.c11042
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-- found
-- found
-- found
-- found
-- found
-- found
-- found
-- found
-- found
-- found
-- found
-- found
-- found

f snowagi ng /fs/cgd/ csm i nputdata/l nd/ cl m2/ sni cardata/ sni car_drdt_bst
fatm ndfrc [ fs/cgd/ csm i nput dat a/ shar e/ domai ns/ domai n. | nd. f v10x15_US
fsnowoptics = /fs/cgd/ csminputdatal/lnd/clnR/snicardatal/snicar_optics_
fsurdat = /fs/cgd/csminputdatal/lnd/cl R/ surfdatal/surfdata_10x15_si myr
prescri bed_ozone_datapath = /fs/cgd/ csm i nputdata/atnf cam ozone

prescri bed_ozone_file = /fs/cgd/csnlinputdatal/atmcanl ozone/ ozone_1. 9x
liqopticsfile = /fs/cgd/csnlinputdatal/atmcanl physprops/F_nwl 200_nmu20
i ceopticsfile = /fs/cgd/csnlinputdatal/atm canl physprops/iceoptics_c080
water_refindex file = /fs/cgd/csnlinputdatal/atm canl physprops/water_re
ncdata = /fs/cgd/ csminputdata/atm caninic/fv/cam _0000-01-01_10x15 L
bnd_topo = /fs/cgd/csnlinputdatal/atmcanitopo/USGS-gtopo30_10x15 remap
ext _frc_specifier for SO2 = /fs/cgd/csnlinputdatal/atm cam chemtrop_no
ext _frc_specifier for bc_al = /fs/cgd/ csminputdatal/atn cam chemtrop_

-- found ext_frc_specifier for numal = /fs/cgd/ csminputdata/atm cam chenmtrop
-- found ext_frc_specifier for numa2 = /fs/cgd/ csminputdata/atm cam chenmtrop
-- found ext_frc_specifier for pomal = /fs/cgd/ csminputdata/atm cam chenmtrop
-- found ext_frc_specifier for so4_al = /fs/cgd/ csminputdata/atm cam chenmtrop
-- found ext_frc_specifier for so4_a2 = /fs/cgd/ csminputdata/atm cam chenmtrop

-- found
-- found
-- found
f ound
-- found
-- found
-- found
-- found
-- found
-- found
-- found
-- found
-- found
-- found

-- found

srf_em s_specifier for DM5 = /fs/cgd/ csm i nputdata/atnf cam chem'trop_n
srf_ems_specifier for SO2 = /fs/cgd/ csm i nputdata/atnlcam chemtrop_n
srf_em s_specifier for SOAG = /fs/cgd/csnlinputdatal/atmcanlchemtrop_
srf_em s_specifier for bc_al = /fs/cgd/csminputdata/atm cam chentrop
srf_em s_specifier for numal /fs/cgd/ csm i nputdatal/atn cam chemtro
srf_em s_specifier for num.a?2 /fs/cgd/ csm i nputdatal/atn cam chemtro
srf_em s_specifier for pomal /fs/cgd/ csm i nputdatal/atn cam chemtro
srf_em s_specifier for so4_al /fs/cgd/ csm i nputdatal/atn cam chemtro
srf_em s_specifier for so4_a2 /fs/cgd/ csm i nputdatal/atn cam chemtro
node_defs for so4_al [ fs/cgd/ csm i nput dat a/ at mf cam physpr ops/ sul f at e
node_defs for pom al /fs/cgd/ csm i nput dat a/ at n cam physpr ops/ ocpho_r
node_defs for soa_al [ fs/cgd/ csm i nput dat a/ at n cam physpr ops/ ocphi _r
node_defs for bc_al = /fs/cgd/csminputdatal/atm cam physprops/bcpho_rr
node_defs for dst_al /fs/cgd/ csm i nput dat a/ at n cam physpr ops/ dust4_r

node_defs for ncl_a3 /fs/cgd/ csm i nput dat a/ at n cam physpr ops/ ssamrr

-- found node_defs for ncl_al = /fs/cgd/ csminputdatal/atm cam physprops/ssamrr
-- found node_defs for so4_a2 = /fs/cgd/csminputdatal/atm cam physprops/sul fate
-- found node_defs for soa_a2 = /fs/cgd/ csminputdatal/atm cam physprops/ocphi _r
-- found node_defs for ncl_a2 = /fs/cgd/ csminputdatal/atm cam physprops/ssamrr
-- found node_defs for dst_a3 = /fs/cgd/csminputdatal/atm cam physprops/dust4_r

-- found
-- found
-- found
-- found

RAARARARFARARARFARAFARAFAIRARARAFAIRARAFARAFAIRARARAFAAAAARARARAAIRNRIAAIAIX/KL

node_defs for so4_a3 [ fs/cgd/ csm i nput dat a/ at mf cam physpr ops/ sul fate
rad_climte for manB_nodel /fs/cgd/ csm i nput dat a/ at nf cam physpr ops/ n
rad_climte for manB_node2 /fs/cgd/ csm i nput dat a/ at nf cam physpr ops/ n
rad_climte for manB_node3 /fs/cgd/ csm i nput dat a/ at nf cam physpr ops/ n

The first nine lines of output from build-namelist inform the user about the files that have been created.
There are namelist files for the ice component (i ce_i n), the river runoff component (r of _i n), the
land component (I nd_i n), the data ocean component (docn_i n, docn_ocn_i n), the atmosphere
component (at m_i n), the driver (drv_i n), and a file that is read by both the atmosphere and land
components (drv_f | ds_i n). Thereisalso a"streamfile" (docn. st ream t xt ) whichisread by the
data ocean component. Note that these filenames are hardcoded in the components and cannot be changed
without source code modifications.

The next section of output istheresult of usingthe- t est argument to build-namelist. Aswith configure
we recommend using this argument whenever a model configuration is being run for the first time. It
checks that each of the files that are present in the generated namelists can be found in the input datatree
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whose root is given by the CSMDATA environment variable. If afile is not found then the user will need
to take steps to make that file accessible to the executing model before a successful run will be possible.
Thefollowingisalist of possible actions:

» Acquire the missing file. If thisis a default file supplied by the CESM project then you will be able
to download the file from the project's svn data repository (see the section called “Acquiring Input
Datasets’).

* If you have write permissions in the directory under $CSMDATA then add the missing file to the
appropriate location there.

* If you don't have write permissions under $CSVDATA then put the file in a place where you can (for
example, your run directory) and rerun build-namelist with an explicit setting for the file using your
specific filepath.

Example 2.1. Use build-namelist to specify a dataset in a non-default location.

Suppose that the -test option informed you that the ncdata file
cam _0000-01-01 10x15 L30_c081013. nc was not found. Y ou acquire the file from the data
repository, but don't have permissions to write in the $CSMDATA tree. So you put the file in your run
directory and issue a build-namelist command that looks like this:

% $cancf g/ buil d-nanelist -config /work/user/camtest/bld/config cache.xm \
-nanel i st "&atm ncdat a='/wor k/ user/camtest/cani _0000-01-01 10x15 L30_c081013. nc

Now the namelist in at m_i n will contain an initial file (specified by namelist variable ncdat a) which
will be found by the executing CAM model.

Acquiring Input Datasets

If you are doing a standard production run that is supported in the CESM scripts, then using those scripts
will automatically invoke a utility to acquire needed input datasets. The information in this section isto
aid developers using CAM standal one scripts.

The input datasets required to run CAM are available from a Subversion repository located here:
https://svn-ccsm-inputdata.cgd.ucar.edu/trunk/inputdata/. The user name and password for the input data
repository will be the same as for the code repository (which are provided to users when they register to
acquire access to the CESM source code repository).

Example 2.2. Acquire missing dataset

If you have a list of files that you need to acquire before running CAM, then you can either
just issue commands interactively, or if your list is rather long then you may want to put the
commands into a shell script. For example, suppose after running build-namelist with the -
t est option you find that you need to acquire the file / f s/ cgd/ csm i nput dat a/ at nf cam
i nic/fv/cam _0000-01-01_10x15 L26 c030918. nc. And let's assume that /f s/ cgd/
csni i nput dat a/ isthe root directory of the inputdata tree, and that you have permissions to write
there. If the subdirectory at mi cam i ni ¢/ f v/ doesn't aready exist, then create it. Finaly, issue the
following commands at an interactive C shell prompt:

% set svnrepo='https://svn-ccsninputdata.cgd. ucar. edu/trunk/inputdata’
% cd /fs/cgd/csminputdata/atm caminic/fv
% svn export $svnrepo/atm canminic/fv/cam _0000-01-01_10x15_L26 c030918. nc
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Error validating server certificate for 'https://svn-ccsminputdata.cgd. ucar. edu: 4
- The certificate is not issued by a trusted authority. Use the
fingerprint to validate the certificate manually!
- The certificate hostname does not match.
- The certificate has expired.
Certificate information:
- Hostname: | ocal host. | ocal domain
- Valid: fromFeb 20 23:32:25 2008 GMI until Feb 19 23:32:25 2009 GJI
- Issuer: SoneOrganizational Unit, SomeOrganization, SoneCty, SoneState, --
- Fingerprint: 86:01:bb:a4:4a: e8:4d: 8b: el:f1:01:dc: 60: b9: 96: 22: 67: a4: 49: ff
(R eject, accept (t)enporarily or accept (p)ermanently? p
A cam _0000-01-01_10x15_L26_c030918. nc
Export conpl ete.

The messages about validating the server certificate will only occur for thefirst file that you export if you
answer "p" to the question as in the example above.

Running CAM

Once the namelist files have successfully been produced, and the necessary input datasets are available,
the model isready to run. Usually CAM will be run with SPMD parallelization enabled, and this requires
setting up MPI resources and possibly dealing with batch queues. Theseissueswill be addressed briefly in
the section called “ Sample Run Scripts’. But for asimple test in serial mode executed from an interactive
shell, we only need to issue the following command:

% / wor k/ user/ cam test/ bl d/cam >& cam | og

Thecommandlineaboveredirects STDOUT and STDERRtothefilecam | og. The CAM logfile contains
asubstantial amount of information from all componentsthat can be used to verify that the model isrunning
as expected. Things like namelist variable settings, input datasets used, and output datasets created are all
echoed to the log file. Thisisthe first place to look for problems when a model run is unsuccessful. It is
also very useful to include relevant information from the logfile when submitting bug reports.

Sample Run Scripts
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The minimal CAM configuration requires an initial conditions dataset. But most configurations requirein
addition to initial conditions avariety of boundary condition files. This chapter will provide an overview
of CAM's dataset requirements and some information on the provenance of the default datasets.

SST and Sea Ice Boundary Files

The standard CAM standalone configuration (An F compset when using CESM scripts) uses prescribed
sea surface temperatures (SST) and seaice fractions from datasets containing either climatological or time
series data. The source of this datafor CAM's default datasetsis Hurrell et al. [2008].

Thedefault CAM datasets have been preconditioned to comply with the AMIP I requirement as described
in Taylor et al. [2000]. The requirement is that the SST and sea-ice concentration boundary conditions
should be specified such that the monthly means computed from model output precisely agree with the
monthly means in the input dataset.

The original Hurrell datasets are on a 1 degree grid. The AMIP 11 versions of these dataset are available
as 1 degree datasets and have also been spatially interpolated to several spectral and finite volume grid
resolutions. The currently available datasets are:

Pre-industrial climatology (1870 - 1890):

atm cam sst/sst_HadO Bl _bc_1x1_clim pi _c101029. nc

atm cam sst/sst_HadO Bl _bc_0. 23x0. 31_cl i m pi _c091020. nc
atm cam sst/sst_HadO Bl _bc_0. 47x0. 63_cl i m pi _c100128. nc
atm cam sst/sst_HadO Bl _bc_0. 9x1. 25_cli m pi _c100127. nc
atm cam sst/sst_HadO Bl _bc_1.9x2.5_climpi_c100127. nc
atm cam sst/sst_HadO Bl _bc_4x5_climpi _c100127. nc

atm cam sst/sst_HadO Bl _bc_10x15_cl i m pi _c100127. nc
atm cam sst/sst_HadO Bl _bc_128x256_cl i m pi _c100128. nc
atm cam sst/sst_HadO Bl _bc_64x128_clim pi_c100128. nc

at nf cam sst/sst_HadQO Bl _bc_48x96_clim pi _c100128. nc
atm cam sst/sst_HadO Bl _bc_32x64_cl i m pi _c100128. nc
atmf cam sst/sst_HadQO Bl _bc_8x16_clim pi _c100128. nc

Historical Time Series

atnl cam sst/sst_HadO Bl _bc_1x1 1850 2012 c130411. nc

atml cam sst/sst_HadQO Bl _bc_0. 23x0.31_1850_2010_c110526. nc
atml cam sst/sst_HadQO Bl _bc_0.47x0. 63 1850 2012 c130411. nc
atnf cam sst/sst_HadO Bl _bc_0.9x1.25 1850 2012 c130411. nc
atml cam sst/sst_HadO Bl _bc_1.9x2.5 1850 2012 c¢130411. nc
atmf cam sst/sst_HadQO Bl _bc_4x5 1850 2012 c130411. nc

atmf cam sst/sst_HadO Bl _bc_10x15 1850 2012 c130411. nc
atmf cam sst/sst_HadO Bl _bc_128x256_ 1850 2012 c¢130411. nc
atnf cam sst/sst_HadO Bl _bc_64x128 1850 2012 c130411. nc
atnmf cam sst/sst_HadO Bl _bc_48x96 1850 2008 c100128. nc

at nf cam sst/sst_HadO Bl _bc_32x64 1850 2012 c130411. nc
atnf cam sst/sst_HadO Bl _bc_8x16 1850 2012 ¢130411. nc

Present day climatology (1982 - 2001):
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atm cam sst/sst_HadO Bl _bc_1x1 clim c101029. nc

at m cam sst/sst_HadO Bl _bc_0. 23x0. 31 _clim c061106. nc
at m cam sst/sst_HadO Bl _bc_0.47x0.63_clim c061106. nc
at m cam sst/sst_HadO Bl _bc_0.9x1. 25 cli m c040926a. nc
at m cam sst/sst_HadO Bl _bc_1.9x2.5 clim c061031. nc
at m cam sst/sst_HadO Bl _bc_4x5 clim c061031. nc

at m cam sst/sst_HadO Bl _bc_10x15 cli m c050526. nc

at m cam sst/sst_HadO Bl _bc_256x512 clim c031031. nc
at m cam sst/sst_HadO Bl _bc_128x256_cl i m c050526. nc
at m cam sst/sst_HadO Bl _bc_64x128 cli m c050526. nc

at m cam sst/sst_HadO Bl _bc_48x96_cl i m c050526. nc

at m cam sst/sst_HadO Bl _bc_32x64_cl i m c050526. nc

at m cam sst/sst_HadO Bl _bc_8x16_cli m c050526. nc
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CAM produces a series of NetCDF format history files containing atmospheric gridpoint data generated
during the course of arun. It also produces a series of NetCDF format restart files necessary to continue a
run once it has terminated successfully and a series of initial conditionsfiles that may be used to initiaize
new simulations. The contents of these datasets are described below.

Model History Files

History files contain model data values written at specified frequencies during a run. Options are also
availableto record averaged, instantaneous, maximum, or minimum values on afield-by-field basis. If the
user wishes to see a field written at more than one time frequency (e.g. daily, hourly), additional history
files must be declared. This functionality is available via setting namelist variables.

History files may be visualized using various commercial or freely available tools. Examples include
the the NCAR Graphics package (via NCL), CDAT, FERRET, ncview, MATLAB, and IDL. For a list
of software tools for interacting with NetCDF files, view the UNIDATA maintained link Software for
Manipulating or Displaying NetCDF Data [ http://www.uni data.ucar.edu/software/netcdf/software.html].

General Features of History Files

CAM writes a sequence of time samples to each of its specified history files. There can currently be from
oneto six history file streams, and each stream hasits own set of the following attributes:

+ fields

* output frequency

» maximun number of time samplesin afile

* output precision (4-byte or 8-byte floats)

* output domain (global or rectangular subdomains)

Each time sample in a history file has an associated timestamp which conforms to the CF metadata
conventions [http://cfconventions.org/]. The time unit used in CAM's output filesis "days since reference
date" where the reference date is the run start date by default, but can be customized viathe r ef _ynd
and r ef _t od namélist variables. The variables relevant to the timestamps are the following (from the
output of the NetCDF ncdump utility):

double tinme(time) ;

time:long_name = "time" ;

time:units = "days since 0000-01-01 00:00: 00" ;
ti me: cal endar = "nol eap” ;

ti me: bounds = "time_bnds" ;

doubl e tine_bnds(time, nbnd) ;
time_bnds:long_nanme = "time interval endpoints” ;

int date(time) ;
date: |l ong_nane = "current date (YYYYMVDD)" ;

i nt datesec(tine) ;

16


http://www.unidata.ucar.edu/software/netcdf/software.html
http://www.unidata.ucar.edu/software/netcdf/software.html
http://www.unidata.ucar.edu/software/netcdf/software.html
http://cfconventions.org/
http://cfconventions.org/
http://cfconventions.org/

Model Output

dat esec: | ong_nane = "current seconds of current date" ;

The variable names, ti e, t i me_bnds, dat e, and dat esec are all loca conventions. What makes
the history files CF compliant is that the time coordinate, t i me, can be identified by it's units attribute
"days since 0000-01-01 00:00:00". Thereference dateisintheform YYYY-MM-DD HH:MM:SS where
YYYY, MM, DD, HH, MM, SS are year, month, day, hour, minute, second respectively, and a missing
timezone defaultsto UTC. Thecal endar and bounds attributes are also part of CF. The cal endar

value "nol eap" denotes the Gregorian calendar with no leap years. The bounds valueti ne_bnds
denotesthat the variablewiththenamet i ne_bnds containsthe timestampsthat bound thetimeintervals
over which an operation such as computing an averager or aminimum or maximum val ue has been applied.
Whether or not theinterval specifiedbyt i ne_bnds isrelevent depends on theindividual variables, e.g.,
asingle file can contain both instantaneous and time averaged fields. The type of the time operation that
has been applied is contained inthecel | _net hods attribute of each variable, e.g.,

float T(tine, lev, lat, lon) ;

T-mdims = 1 ;

T:units = "K" ;

T: 1 ong_nane = "Tenperature" ;
T.cell _methods = "tinme: mean" ;

The cel | _net hods attribute for the temperature variable indicates that it is being output as a time
averaged fidld. If temperature wasinstantaneousthenthecel | _net hods attribute would not be present
since instantaneous is the defaullt.

The variables dat e and dat esec are for convenience only; they don't play any role in terms of CF
compliance. Thedat e variable is an integer which isencoded to contain the digits YYYYMMDD where
YYYY, MM, and DD aretheyear, month, and day of month respectively. dat esec istheinteger number
of seconds past 0Z in the current day. The variables dat e and dat esec are redundant in the sense that
they can be recovered from thet i me variable via a date calculation using the specified calendar.

Timestamps and time intervals

Thetimestamp associated with each time samplein a history fileisthe model time at the end of thetimestep
during which the model writes data to the disk. In the case of instantaneous data the meaning is clear.
However when the data is representative of atime interval, the timestamp corresponds to the end of the
interval.

This is often a point of confusion when looking at history files. Since the endpoint of one interval is the
same as the begining of the next interval, when looking at a monthly average for January, which has a
timestamp of 0Z on Feb 01, at first glance the timestamp would seem to correspond to a February average.
Henceit'simportant for post processing tools to make use of the datainthet i me_bnds variable so that
the time interval endpoints can be used to compute an interval midpoint which is the more appropriate
timestamp to associate with the interval.

Example 4.1. Timestampsfor ayear of monthly averages

Here are the timestamps and corresponding time interval bounds for a one year sequence of monthly
averages starting at 0000-01-01 00:00:00.

Mont h tinme date dat esec ti me_bnds
Jan 31 201 0 0, 31
Feb 59 301 0 31, 59
Mar 90 401 0 59, 90
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Apr 120 501 0 90, 120
May 151 601 0 120, 151
Jun 181 701 0 151, 181
Jul 212 801 0 181, 212
Aug 243 901 0 212, 243
Sep 273 1001 0 243, 273
Cct 304 1101 0 273, 304
Nov 334 1201 0 304, 334
Dec 365 10101 0 334, 365

Multiple time samples in a single file

CAM's default history output is a sequence of monthly averaged fields, written with one time sample per
file. Thisrestriction is related to the default file naming scheme which uses the string "YYYY-MM" to
indicate the year and month of the average contained in the file. However in general it is possible to write
multiple time samplesin any of the history file streamsthat don't contain monthly timeintervals. However
there is one somewhat unexpected "feature" of multiple time sample files that we wish to point out here.

Example 4.2. Timestampsfor five daily averages

Here are the timestamps and corresponding time interval bounds for all time samples written to a single
filefrom a5 day run starting at 0000-01-01 00:00:00.

Sanpl e tinme dat e dat esec ti me_bnds
1 0 101 0 0, O
2 1 102 0 0, 1
3 2 103 0 1, 2
4 3 104 0 2, 3
5 4 105 0 4, 5
6 5 106 0 5 6

Instead of ending up with a file containing five time samples, i.e., a daily average for each of the first
five days of January, we get six time samples. The first one looks a bit strange since the time bounds
are indicating an interval of zero duration. But in fact that's correct for the first time sample which is
instantaneous datarepresenting theinitial conditionswhich have only been modify by apartial first step up
to the point of the radiation calculation. This"extra" time sample from the initialization phase isincluded
in every history file except for the monthly average file. An unfortunate conseguence of this extra time
sampleisthat it's not possible to create a sequence of files with the same number of time intervals since
the first file in the sequence will always have one fewer time interval than the rest due to the inclusion
of the time zero sample.

Default History Fields and Master Field Lists

CAM isset up by default to output a set of fieldsto asingle monthly average history file. Thereisamuch
larger set of available fields, known as the "master field list," from which the user can choose fields of
interest to add to the history file via namelist settings. Both the set of default fields and the master field
list depend on how CAM is configured. Due to the large number of fields we have chosen to make lists of
fields for some standard configuration available via linked documents rather than to inline the lists here.
Each of the field list documents is comprised of tables containing the lists of fields that are output by
default as well asthe master field list.

NOTE: The master field list tables may contain some fields that are not actually available for output.
The presence of a field in the master field list is a necessary, but not sufficient condition that the

18



Model Output

corresponding field in the history file will contain valid data. Thisis because in some instances fields are
added to the master field list (thisisdonein the source code) even though that field may not be computedin
the configuration that is built (specified via the arguments to configur €). When adding non-default fields
to the history file it'simportant to check that the fields contain reasonable data before doing along run.

Thefollowing links provide tables of default and master field listsfor some standard model configurations
which are characterized by the values of the - dyn, - phys, and - chemarguments to configure. The
source of the information in these tablesis CAM's default log file, so you can always look there for any
configuration not included in the list below.

 fv, cam4, none [hist_flds fv_cam4.html]

 fv, cam4, trop_bam [hist_flds fv_cam4 trop_bam.html]

« fv, camb, trop_mam3 [hist_flds fv_cam5.html]

« fv, cam4, waccm_mozart [hist_flds fv_cam4 waccm.html] (use_case: waccm_2000_camd4)

e fv, camd4, super_fast_lInl [hist_flds fv_cam4 super fast_|Inl.html] (use_case:
2000 _cam4_super_fast_lInl)
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Chapter 5. Physics modifications via
the namelist

This chapter is comprised of sections that explore how to customize various aspects of CAM's run time
configuration. General instructions for building namelists using the build-namelist utility were given in
the section called “Building the Namelist”, and details of the build-naméelist utility are in Appendix B,
The build-namelist utility.

Radiative Constituents

The atmospheric constituentswhich impact the calcul ation of radiativefluxesand heating rates arereferred
to as radiative congtituents. A single CAM run may potentially contain multiple sources of any given
constituent, for example, aprognostic version of ozone from a chemistry scheme and a prescribed version
of ozone from a dataset. The radiative constituent modul e was designed to

* provideanexplicit specification of the gasand aerosol constituentsthat impact the radiation cal culations,
and

« alow this specification to be modified via the namelist.

A detailed description of the radiative constituent module is found in the Reference Manual [../rm5_3/
rm.html#rad_cnst_intro].

Putting the entire specification of the radiative constituents into the namelist results in a certain amount
of complexity which is hard to avoid. This sections begins with a description of what's in the default
specifications for both the camd and canb physics packages. Following that are some examples of how
to modify the default namelist settings.

Default rad_cl i mat e for camd physics

The camit physics package uses prescribed gases (except for water vapor), and prescribed bulk aerosols.
rad_cl i mat e isthe namelist variable which holds the specification of radiatively active constituents.
The default value of r ad_cl i nat e generated by build-namelist is:

rad climte =

"AQH2O, '"N®2:®2', "NC®R:C®2', 'N ozone: @',
N2O N2O, "N CH4: CH4', ' N: CFCl1: CFC11', ' N CFCl12: CFCl2',
: sul f:/ CSMDATA/ at nf cani physprops/sul fate_canrt c080918. nc',
dust 1: / CSMDATA/ at ml canf physprops/ dust1_canrt_c080918. nc',
dust 2: / CSMDATA/ at ml canf physprops/ dust2_canrt _c080918. nc',
dust 3: / CSMDATA/ at ml canf physprops/ dust 3_canrt _c080918. nc',
dust 4: / CSMDATA/ at ml cant physprops/ dust4_canrt _c080918. nc',
bcar 1: / CSMDATA/ at m cani physpr ops/ bcpho_canrt _c080918. nc',
bcar 2: / CSMDATA/ at m cani physpr ops/ bcphi _canrt_c080918. nc',
ocar 1: / CSMDATA/ at ml cant physpr ops/ ocpho_canrt _¢c080918. nc',
ocar 2: / CSMDATA/ at ml cant physpr ops/ ocphi _canrt _c080918. nc',
. SSLTA: / CSMDATA/ at m cant physprops/ ssam canrt _c080918. nc',
. SSLTC. / CSMDATA/ at m cant physprops/ sscm camrt _c080918. nc'

ZZZZZzZzzZzZzzZzzzZzz>

Ther ad_cl i mat e variable takes an array of string values. Each of the strings has three fields separated
by colons. In thisexamplethefirst field of each string is either an A or an N. An Aindicates the constituent
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is advected and an N indicates the constituent is not advected. Generally a non-advected constituent is
one whose value is prescribed from a dataset but that's not always the case. It's also possible that a non-
advected constituent is one that has been prognosed by achemistry scheme (e.g. the cloud borne speciesin
the modal aerosol models) or diagnosed from other prognostic species. The second field in each string is
aname that is used to identify the constituent in the appropriate internal data structure (there are separate
data structures for the advected and the non-advected constituents). The third field is either a name from
the set of gas specie names recognized by the radiation code, or it is an absolute pathname of a dataset
that contains physical and optical properties of an aerosol. Thisthird field is how CAM distinquishes the
gas from the aerosol species.

The names used for the prescribed gas species except ozonein both thecamt and canb physics packages,
i.e, @2, CO2, N\20O, CH4, CFC11, and CFC12, are hardcoded in the module ghg _dat a which is
responsible for setting the values of these species in the physics buffer. The name for water vapor, Q
is hardcoded in acnst _add subroutine call made from subroutine phys_r egi st er. The name for
ozone, 0zone, ishardcodedinthepr escr i bed_ozone modulewhichisresponsiblefor reading ozone
datasets and setting the values for ozone in the physics buffer.

The names used to identify the gas specieswhich must be provided to the camd radiation codeare H2O, 2,
CO2, @3, N20O, CH4, CFC11, and CFC12. These names are hardcoded in the module r adconst ant s.
There are no datasets associated with the gas specie names because the optical properties of the gases are
handled by the radiation code directly.

The names used to identify the bulk aerosol species are hardcoded in the build-namelist
utility and are specified to the prescribed aero module by the namelist variable
prescri bed_aero_specifier asfollows:

prescri bed _aero_specifier =
"sul f:SO4', 'bcarl:CB1', 'bcar2:CB2', 'ocarl:QOCl', 'ocar2:0C2',
"sslt1:SSLTO1', 'sslt2:SSLT02', 'sslt3:SSLT03', 'sslt4:SSLT04',
"dust 1: DSTO1', 'dust?2:DST02', 'dust3:DST03', 'dust4:DST04'

The first name in each of these colon separated pairs is the one the pr escri bed_aer o module adds
to the physics buffer, while the second name is the variable name in the dataset. The first names for all
the species except the sea salt bins (ssl t 1, ..., ssl t 4) are the ones that appear inther ad_cl i nat e
specifier. Sea salt is treated specially by repartitioning the total mass in the four binsinto a coarse and an
accumulation mode with the names SSLTC and SSLTA respectively. The repartitioning is done by the
sslt_rebi n module.

Each of the aerosol species has an associated file which contains physical and optical properties.

Default rad_cl i mat e for canb physics

The canb physics package uses the same prescribed gases as the camd package, but uses prognostic
modal aerosolsfromthet r op_nmanB chemistry package. Thedefault valueof r ad_cl i mat e generated
by build-namelist is:.

rad _climte =
"AQH2O, '"N®2:®2', "NC2:CXR', 'N ozone: @',
"N:.N2O N2O, "N CH4: CH4', ' N CFCl1: CFC11', ' N CFCl2: CFCl2',
"M manB_nodel: / CSVMDATA/ at nl cam physpr ops/ manB_nodel_rrtng_c110318. nc',
"M manB_node2: / CSVMDATA/ at nl cam physpr ops/ manB_node2_rrtng_c110318. nc',
"M manB_node3: / CSMDATA/ at ml cam physpr ops/ manB_node3_rrtng_c110318. nc'
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The gas species mass mixing ratios come from the same constituents in canb as they did in camd
(but the radiative treatment is different since ther r t ng radiation package replaces canr t ). Hence the
rad_cl i mat e strings for the gasses are the same as they were in the camid physics example.

The aerosol congtituents in thisrad_cl i mat e specification are al in the form of modes. The first
field is an Mrather than an A or an N to indicate that the aerosol constituents are modes. Roughly, the
rad_cl i mat e variableliststhe aerosol constituents whose contributions are added together to compute
the total aerosol optical depth. In the case of the bulk aerosols the optical depths due to the individual
aerosol species are summed to find the total aerosol optical depth. In the case of the modal aerosol model
it is the modes that are summed. Hence each mode has an entry in ther ad_cl i mat e list, along with a
file that contains physical and optical properties of the mode as a whole. In the example above there are
three modes identified by the names man8_nodel, manB8_node2, and manB_node3. These names
are hardwired in the build-namelist utility and are only used to connect each mode with more detailed
specification of the constituents that comprise it. That specification is given by the namelist variable
node_def s and looks as follows for the default t r op_nanB chemistry scheme.

node_defs =
"manB_nodel: accum =",
"A:num.al: NN numcl: numnr: +',
"Arso4_al: N sod_cl:sul fate:/ CSMDATA/ at m cam physprops/sul fate_rrtng_c080918. nc:
" A pom al: N pom cl: p-organi c:/ CSMDATA/ at m cani physprops/ ocpho_rrtng_c101112. nc:
" Arsoa_al: N soa_cl:s-organi c:/ CSMDATA/ at m cani physprops/ ocphi _rrtng_c100508. nc:
"A:bc_al: N bc_cl: bl ack-c:/ CSMDATA/ at nf cam physpr ops/ bcpho_rrtmg_c100508. nc: +',
"Ardst_al: N dst_cl: dust:/ CSMDATA/ at m camf physprops/dust4_rrtng_c090521. nc: +',
"A:ncl _al: N ncl _cl:seasal t:/ CSMDATA/ at nl cam physprops/ ssam rrtng_c100508. nc',
"manB_node2: ai t ken: =",
"A:num.a2: N numc2: numnr: +',
"Arso4_a2: N sod_c2:sul fate:/ CSMDATA/ at m cam physprops/ sul fate_rrtng_c080918. nc:
" Arsoa_a2: N soa_c2:s-organi c:/ CSMDATA/ at m cani physprops/ ocphi _rrtng_c100508. nc:
"A:ncl _a2: N ncl _c2: seasal t:/ CSMDATA/ at nl cam physpr ops/ ssam rrtng_c100508. nc',
'manB_node3: coar se: =,
"A:num.a3: N. numc3: numnr: +',
"Ardst_a3: N dst_c3: dust:/ CSMDATA/ at m camf physprops/ dust4_rrtng_c090521. nc: +',
"A:ncl _a3: N ncl _c3: seasal t:/ CSMDATA/ at m cam physprops/ ssam rrtng_c100508. nc: +',
"Arso4_a3: N so4_c3:sul fate:/ CSVMDATA at nl cam physprops/sul fate_rrtng_c080918. nc'

Similarly tother ad_cl i mat e variable, the node_def s variable isan array of strings which provide
adefinition for all the modes that may be used in a single run. The modes don't all need to appear in the
rad_cl i mat e variable; some may only be needed for diagnostic radiation calculations which will be
discussed in more detail |ater.

There are three different types of stringsin node_def s:

» Theinitial string in each mode specification contains three fields. The first is a name that identifies the
mode, the second is a name that identifies the type of the mode, and the final is the token "=".

 One string in each mode specification must contain the names for the mode number concentrationsin
both the interstitial and cloud borne phases.

» One or more strings in each mode specification must contain the names for the mass mixing ratios in
both the interstitial and cloud borne phases of the individual constituents that comprise the mode.

The example of node_def s above has been formatted in away that makes the individual parts of each
mode definition stand out. The actual output from the build-namelist utility is not formatted like this and
isabit harder to decipher.
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What followsis an detailed explanation of the mode definitionsin the example above.

» There are three modes defined, i.e.,, man8_nodel, manB_node2, and manB8_node3. The name of

a mode is arbitrary, the only requirement being that the same name is used in therad_cl i mat e
(or rad_di ag_N) and the node_def s variables. These default mode names for t r op_manB are
hardcoded in the build-namelist utility. The three modes are of type accum(accumulation), ai t ken,
and coar se respectively. The names for the mode types are hardcoded in the nodal _aer o_dat a
module.

The second line in the definition of each mode contains the names of the number concentrations for the
interstitial and cloud borne phases. Looking specifically at the definition for man8_nodel, the first
two fieldsarefor theinterstitial phase and specify that thenamenum al isan advected constituent (A),
while the third and fourth fields are for the cloud borne phase and specify that the namenum cl isa
non-advected constituent (N). The names of the number concentration constituents are hardcoded in the
nmodal _aero_initialize_data module The fifth field, num nr, is afixed token recognized
by the parser of the node_def s strings (inther ad_const i t uent s module) as an indicator that
the string contains the number concentration names. The final token in the string, a"+", signals to the
parser that the definition of the current mode continuesin the next string.

Thethird through final stringsin each mode definition contai n specificationsfor each speciein the mode.
Looking again at the definition of manB_node1, thefirst specieisof typesul f at e whichisindicated
by the fifth field in that string. The specie type names are hardcoded in the nodal _aer o_dat a
module. The first two fields in the string provide the name for the mass mixing ratio of the speciein
theinterstitial phase (so4_al), andindicatethat it is an advected constituent (A). Fields three and four
specify that the name of the mass mixing ratio for the cloud borne phaseisso4_c1, and that thisis
a non-advected constituent (N). The names of the mass mixing ratio constituents are hardcoded in the
nmodal _aero_initialize_dat a module. Thesixthfieldinthe string isthe absolute pathname of
the file containing physical and optical properties of the specie. The last field in the string contains the
token "+" which again indicates that the definition of the mode continues in the next string.

Example 5.1. Modify aradiatively active gas

Suppose that we wish to modify the distribution of water vapor that is seen by the radiation calculations.
More specifically, consider modifying just the stratospheric part of the water vapor distribution while
leaving thetroposheric distribution unchanged. To modify aradiatively active gastwo things must be done.

Change the name (and possibly the type) of the constituent which is providing the mass mixing ratios
to the radiation code. Thisisasimple modificationto ther ad_cl i mat e value.

Make the necessary modifications to CAM to provide the new constituent mixing ratios. A likely
scenario for this example would be to create anew module which isresponsible for adding the modified
water vapor field to the physics buffer. This module could leverage the existing t r opopause module
to determine the vertical levels where changes need to be made. It could al so leverage existing modules
for reading and interpolating prescribed constituents, for examplethe pr escr i bed_ozone module.
Details of how to make this type of source code modification won't be covered here.

Now suppose the source code modifications have been made and the new water vapor constituent isin
the physics buffer with thename Q f i xst r at . The best way to modify ther ad_cl i mat e variableis
to start from a value that was generated by build-namelist for the configuration of interest but with the
default water vapor, and then to modify that version of r ad_cl i mat e and add themodified version tothe
build-namelist command inour run script. Notethat theentirevalueof r ad_cl i mat e must be specified.
Thereisno way to just modify one individual string in the array of string values. If we are running with a
default cand configuration then the customized namelist would be generated by the following command.
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$cancf g/ buil d-nanmelist ... \
-nanelist "&am. ..
rad _climte =
"NQfixstrat:H2O, "N Q2: 2", 'N.COR:CXR2', 'N ozone: 3",
"N:N2OC N2O, ' N CH4: CH4', ' N CFCl1: CFCl1', ' N CFCl2: CFCl2',
"M manB_nodel: / CSVMDATA/ at nl caml physpr ops/ manB_nodel_rrtng_c110318. nc',
"M manB_node2: / CSVMDATA/ at nl cam physpr ops/ manB_node2_rrtng_c110318. nc',
"M manB_node3: / CSMDATA/ at nl cam physpr ops/ man8_node3_rrtng_c110318. nc' /"

The only difference between this version of r ad_cl i nat e and the default is that the string for water
vapor:

"AQ H20

has been replaced by

"N Q fixstrat: H2O

In addition to specifying the new name for the constituent (Q f i xst r at), it was necessary to replace
the A by an N since the new constituent is not advected, even though it isderived in part for the constituent
Qwhich is advected.

Diagnostic radiative forcing

There are several namelist variables available for direct radiative forcing calculations in the canb
physics package. But note that these online calculations are enabled for RRTMG only and not for the
CAM_RT radiation code used in the cam? and earlier physics packages. The ability to do radiative
forcing calculationswith CAM_RT is provided by using the offline tool PORT which is documented here
[https://wiki.ucar.edu/display/port/PORT], and described in the paper Conley et a. [2013]. The PORT
functionality isincluded in the CESM release code.

Namelist variablesare availablefor ten radiativeforcing calculations; r ad_di ag_1,...,rad_di ag_10.
Thevaluesof these variablesusethe exact sameformat asther ad_cl i mat e variable. When adiagnostic
calculation isrequested, for example by setting thevariabler ad_di ag_1, then the default history output
variables for the radiative heating rates and fluxes will be output for the diagnostic calculation as well.
The names of the variables for the diagnostic calculation will be distinquished from those that affect
the climate simulation by appending the strings'_d1', ...,'_d10' for diagnostic calculations specified by
rad_di ag_1 throughr ad_di ag_10 respectively.

Example5.2. Aerosol radiative forcing

To compute the total aerosol radiative forcing we need a diagnostic calculation in which al the aerosols
have been removed. To do this we start from the default setting for ther ad_cl i mat e variable, use that
as the initial setting for r ad_di ag_1, and then edit that initial setting to remove the aerosols. In the
canb physics thisinvolves removing the specification of the three modes, so we end up with asettingin
our build-namelist command that looks like this

$cancf g/ buil d-nanmelist ... \
-nanelist "&am. ..
rad_diag_1 =

"AQHO, 'NO2:®2', '"NC:C2', 'N ozone: (3",
"N:.N2O N2O, "N CH4: CH4', ' N CFCl1: CFC11', ' N CFCl2: CFC12' /™
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Example 5.3. Black carbon radiative forcing

To compute the radiative forcing of asingle aerosol specie we need a diagnostic calculation in which that
specie has been removed from all modes that contain it. This is a bit more complicated that the previous
example where we were able to remove entire modes from the value of r ad_di ag_ 1. Removing species
from modes requires us to create new mode definitions. Using black carbon as a specific example, we
see from the default definitions of thet r op__manB modes (the section called “Default rad_cl i nat e
for canb physics’) that black carbon is only contained in manB8_nodel. The best way to create the
definition of a new mode which doesn't contain black carbon is to copy the definition of man8_nodel,
change its name, and remove the black carbon from the definition. Then use this new mode in place of
manB_nodel in the specifier for rad_di ag_1. Below is an outline of our build-namelist command
with just thenode_def s andrad_di ag_1 variableslisted.

$cancf g/ buil d-nanelist ... \
-nanelist "&am ...
node_defs =

"manB8_nodel: accum =,
"Arnum.al: N numcl: numnr:+',
"Arso4_al: N sod_cl:sul fate:/ CSMDATA/ at ml camf physprops/ sul fate_rrtng_c080918. nc:
" A pom al: N: pom cl: p-organi c:/ CSMDATA/ at m cani physprops/ ocpho_rrtng_c101112. nc:
"Arsoa_al: N soa_cl:s-organi c:/ CSMDATA/ at m cani physprops/ ocphi _rrtng_c100508. nc:
"A:bc_al: N bc_cl: bl ack-c:/ CSMDATA/ at nf cam physpr ops/ bcpho_rrtnmg_c100508. nc: +',
"Ardst_al: N dst_cl: dust:/ CSMDATA/ at m camf physprops/ dust4_rrtng_c090521. nc: +',
"A:ncl _al: N ncl _cl:seasalt:/ CSVMDATA/ at nl caml physprops/ ssam rrtng_c100508. nc',
"manB8_node2: ai t ken: =",
"Arnum_a2: N numc2: numnr: +',
"Arso4_a2: N sod_c2:sul fate:/ CSMDATA/ at m camf physprops/ sul fate_rrtng_c080918. nc:
" Al soa_a2: N soa_c2:s-organi c:/ CSMDATA/ at m cani physprops/ ocphi _rrtng_c100508. nc:
"A:ncl _a2: N ncl _c2:seasal t:/ CSMDATA/ at ml caml physpr ops/ ssam rrtng_c100508. nc',
" manB8_node3: coar se: =",
"Arnum_a3: N num c3: numnr: +',
"Ardst_a3: N dst_c3: dust:/ CSMDATA/ at m canmf physprops/ dust4_rrtng_c090521. nc: +',
"A:ncl _a3: N: ncl _c3: seasal t:/ CSMDATA/ at ml camf physprops/ ssam rrtng_c100508. nc: +',
"A:so4_a3: N sod4_c3:sul fate:/ CSMDATA/ at nl cam physprops/sul fate_rrtng_c080918. nc'
"manB8_nodel noBC:. accum =",
"Arnum.al: N numcl: numnr:+',
"Arso4_al: N sod_cl:sul fate:/ CSMDATA/ at m cam physprops/sul fate_rrtng_c080918. nc:
" A pom al: N: pom cl: p-organi c:/ CSMDATA/ at m cani physprops/ ocpho_rrtng_c101112. nc:
"Arsoa_al: N soa_cl:s-organi c:/ CSMDATA/ at m cani physprops/ ocphi _rrtng_c100508. nc:
"Ardst_al: N dst_cl: dust:/ CSMDATA/ at m camf physprops/ dust4_rrtng_c090521. nc: +',
"A:ncl _al: N ncl _cl:seasalt:/ CSMDATA/ at m camf physprops/ ssam rrtng_c100508. nc'

rad_diag_1 =

"AQH2O, 'NO2:', 'N.CO2:C2', 'N ozone:(3',

"N.N2O N2O, "N CH4: CH4', ' N: CFCl1: CFC11', ' N CFCl2: CFCl2',

"M manB8_nodel noBC:. / CSMDATA/ at ml caml physpr ops/ nanB_nodel rrtng_c110318. nc',
"M manB_node2: / CSMDATA/ at nl canml physpr ops/ manB_node2_rrtng_c110318. nc',

"M manB_node3: / CSMDATA/ at nl caml physpr ops/ nanB8_node3_rrtng_c110318. nc' /"

Note that we just appended the new mode definition, man8_nodel noBC, to the end of the modes used
in the climate cal cul ation, and then used that mode in place of man8_nodel inther ad_di ag_1 vaue.
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The configure utility provides a flexible way to specify any configuration of CAM. The best way
to communicate to another user how you built CAM is to simply supply them with the configure
commandline that was used (along with the source code version).

configur e has two distinct operating modes which correspond to the two distinct ways of building CAM,
i.e., either using the CESM scripts, or using CAM standalone scripts. By default configure runs in the
mode used by the standal one scripts. Inthismode configur eisresponsiblefor setting the filepaths and CPP
macros needed to build not only CAM, but al the components of the standalone configuration including
the land, sea ice, data ocean, and driver. In the mode used when building CAM from the CESM scripts
configureisonly responsible for setting the filepaths and CPP macros needed to build alibrary containing
just the CAM component.

When configuring abuild of standalone CAM, configure producesthefilesFi | epat h and Makefi | e.
In addition, a configuration cache file (confi g_cache. xm by default) is written which contains the
values of all the configuration parameters set by configure. Thefiles produced by configur e are written to
thedirectory where CAM will be built, which by default isthe directory from which configur eis executed,
but can be specified to be elsewhere (see the - cam bl d option).

When configuring CAM for a build using the CESM scripts, configure doesn't write a Makefile, but
instead writes a file CCSM_cppdef s which is used by the CESM Makefile. Also, the Fi | epat h file
only contains paths for the CAM component.

In both modes configure is responsible for setting the correct filepaths and CPP macros to produce the
desired configuration of CAM's dynamical core, physics parameterizations and chemistry scheme. The
optionsthat areinvolved in making these choices are described in the section called “ CAM configuration”
below. The subsequent sections describe options used by the CAM standal one scripts.

configure will optionally perform tests to validate that the Fortran compiler is operational and Fortran 90
compliant, and that the linker can resolve references to required external libraries (NetCDF and possibly
MPI). These tests will point out problems with the user environment in a way that is much easier to
understand than looking at the output from afailed build of CAM. We strongly recommend that the first
time CAM is built on any new machine, configure should be invoked to execute these tests (see the -

t est option).

How configure is called from the CESM scripts

The CESM scripts access CAM's configure via the script $CAM_ROOT/ nodel s/ at mf cand bl d/
cam bui I dnm . csh. The cam bui | dnm . csh script acts as the interface between the CESM
scripts and CAM's configur e and build-namelist utilities.

Arguments to configure

All configuration options can be specified using command line arguments to configure and this is the
recommended practice. Options specified via command line arguments take precedence over options
specified any other way.

At the next level of precedence a few options can be specified by setting environment variables. And
finally, at the lowest precedence, many options have hard-coded defaults. Most of these are located in
the files $CAM_ROOT/ nodel s/ at ml canmi bl d/ config_files/defaults_*.xm . A few that
depend on the values of other options are set by logic contained in the configur e script (a Perl script). The
hard-coded defaults are designed to produce the standard production configurations of CAM.
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The configure script allows the user to specify compile time options such as model resolution, dynamical
core type, additional compiler flags, and many other aspects. The user can typeconfi gure --help
for acomplete list of available options.

The options may all be specified with either one or two leading dashes, e.g., - hel p or - - hel p. Thefew
optionsthat can be expressed as single letter switches may not be clumped, e.g., - h - s - v may NOT be
expressed as- hsv. When multiple optionsarelisted separated by avertical bar either version may be used.

CAM configuration

These options will have an effect whether running CAM as part of CESM or running in a CAM standalone
mode:

-[no]Jage_of _air_trcs Switch on [off] age of air tracers. Default: on
for waccm_phys, otherwise off.

- car ma <nane> Build CAM with specified CARMA
microphysics model [ none | bc_strat |
ci rrus |dust |neteor_snoke | pnt |
sea_salt |sulfate |test_detrain
| test_growh | test_passive |
test _radiative |[test_swelling |
test _tracers ]. Default: none.

- chem<nane> Build CAM with specified prognostic
chemistry package [ waccm nmozart |
waccm nozart _sul fur | waccm ghg
| trop_nozart | trop_nozart_manB
| trop_nozart_soa | trop_ghg
| trop_bam | trop_manB |
trop_man¥ | super_fast _I[Inl |
super _fast _|Inl_man8 |
trop_strat_soa|trop_strat_manB
| trop_strat_manv | none ]. Default:
t r op_man8 if the physics packageiscan®b,
otherwise defaultisnone.

-cl ubb_sgs Switch to turn on the CLUBB_SGS package.
Default: Off.

-co2_cycle This option is usualy used with the
-ccsmseq option as pat of the
configuration for running biogeochemistry
(BGC) compsets. It modifies the CAM
configuration by increasing the number of
advected constituents by 4. Default: not set.

-conmp_intf [nct |esnf] Specify the component interfaces Default:
nct .

- cosp Enable the COSP simulator package. Default:
not set.

- cppdef s <string> A string of user specified CPP defines
appended to Makefile defaults. E.g. -

27



The configure utility

cppdefs'-DVARL -DVAR2'. Note that
astring containing whitespace will need to be

quoted.

-dynJfeul |sld]|fv|se] Build CAM with specified dynamical core.
Default: f v.

-edit _chem nech Invokes CAMCHEM EDI TOR to alow the

user to edit the chemistry mechanism file.

- hgri d <nanme> Specify horizontal grid. For spectral grids use
nl at xnl on wherenl at and nl on arethe
number of latitude and longitude grid points
respectively inthe global Gaussian grid (e.g.,
64x128). For FV grids use dl at xdl on
where dl at and dl on are the grid cell
size in degrees for latitude and longitude
respectively (e.g., 1. 9x2. 5). For SE grids
(cubed sphere) use neNnpMwhere N is the
number of elements on an edge of the cube,
and Mis the number of Gauss points on the
edge of an element (e.g., ne30np4).

-m crophys [ngl |ngl. 5|rK] Specify the microphysics package. Default:
ngl if the physics package is canb,
otherwiser k.

- nadv <n> Set total number of advected species to

<n>. If - nadv is set to a larger number
than is required by the selected physics and
chemistry schemes, then the remainder will
automatically be used for test tracers (N.B.
the namelist variablet r acer s_f | ag must
be set to . true. to enable the test tracer
code.) Default: set to the number required by
the selected physics and chemistry schemes.

-nadv_tt <n> Set number of advected test tracers to <n>.
Setting the number of test tracers explicitly
with this option alows build-namelist to
automatically enable the test tracer code
by setting the tracers_fl ag namelist
variable. Default: 0.

-nl ev <n> Set number of vertical layersto <n>. Default:
30 if the physics package is canb, i deal ,
or adi abati c. 26 if the physics package
is camt. 66 if the chemistry package is
waccm *. 81 if the- waccnx isused.

-of fline_dyn Switch enables the use of offline driver for
FV dycore. Default: not set.

- pbl [uw|hb |hbr |cl ubb_sgs] PBL package. Default: uw if the physics
package is canb; cl ubb_sgs if the -
cl ubb_sgs switchis set; otherwise hb.

28



The configure utility

- pcol s <n>

-pergro

- phys [canB |camd |can®b |i deal |adi abati c]

-prog_species<list>

- psubcol s <n>
-rad[rrtng|canrt]
-usr_nmech_infil e <nanme>

-waccm phys

- WacCCiK

SCAM configuration

- cam op

only works with the Eulerian dycore.

-Sscam

CAM parallelization

-[no] snp

Set maximum number of grid columnsin a
chunk to <n>. Default: 16.

Switch  enables building CAM for
perturbation growth tests. Only valid with
canB and camd physics packages.

Physics package. Default: canb.

Comma separated list of prognostic mozart
species packages. Currently available:
DST, SSLT, SO4, GHG, OC, BC, CARBON16

Set maximum number of subcolumnsinagrid
column to <n>. Default: 1.

Radiation package. Default: rrtng if the
physics packageis canb, otherwisecanrt .

Pathname of the user supplied chemistry
mechanism file.

Switch enables the use of WACCM physics
in any chemistry configuration. Default: Off
unless one of the waccm chemistry optionsis
chosen then it's automatically turned on.

Build CAM/WACCM with WACCM upper
Thermosphere/lonosphere extended package.

Configure CAM to generate an |OP file that can be used to drive SCAM. This switch

Compiles model in single column mode. Only works with Eulerian dycore.

Switch on [off] SMP parallelism (OpenMP). This option can be used when building

amodel that doesn't contain CICE. It allows building an executable whose thread
count can be set at run time.

-[ no] spnd

Switch on [off] SPMD parallelism (MPI). This option can be used when building a

model that doesn't contain CICE. It allows building an executable whose task count
can be set at run time,

CAM parallelization when running standalone with CICE

- nt asks <n>

This option must be used to specify SPMD parallelism when the CICE

component is present. <n> is the number of MPI tasks. Setting ntasks >
Oimplies- spnd. Use- nospnd to turn off linking with an MPI library.
To configure for pure MPI specify "- nt asks N - nosnp". ntasksis
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used by CICE to determine default grid decompositions which must be
specified at build time.

- nt hr eads <n> This option must be used to specify SMP parallelism when the CICE
component is present. <n> isthe number of OpenM P threads per process.
Setting nthreads > 0 implies - snp. Use - nosnp to turn off compilation
of OMP directives. For pure OpenMP set "- nt hr eads N - nospnd”.
nthreadsis used by CICE to determine default grid decomposition which
must be specified at build time.

NOTE:  When CAM isrunning standalone with CICE the default CICE decomposition is determined
from the values of the - nt asks and - nt hr eads arguments. The user also has the ability to explicitly
set the CICE decomposition using the following four arguments. If any of these argumentsis set then ALL

FOUR must be set.

-ci ce_bsi zex <n>
-ci ce_bsi zey <n>

- ci ce_maxbl ocks <n>

- ci ce_deconpt ype <name>

General options

- cache <nane>

-cachedir <dir>

-ccsm seq

- def aul t s <nanme>

-help | -h
-silent | -s

-test

-verbose | -v

-version

CICE block size in longitude dimension. This
size must evenly divide the number of longitude
pointsin the global grid.

CICE block sizein latitude dimension. Thissize
must evenly divide the number of |atitude points
in the global grid.

Maximum number of CICE blocks per process.

CICE decomposition type [ cartesian |
spacecurve [roundr obin].

Name of output cache file. Default: confi g_cache. xm .

Name of directory where output cache file is written. Default:
CAM build directory.

Switch to specify that CAM is being built from within the CESM
scripts. This produces Filepath and CCSM_cppdefs files that
contains only the paths and CPP macros needed to build alibrary
for the CAM component.

Specify a configuration file which will be used to supply defaults
instead of one of the config _files/defaults_*.xnl
files. Thisfileis used to specify model configuration parameters
only. Parametersrelating to the build which are system dependent
will beignored.

Print usage to STDOUT.
Turns on silent mode - only fatal messages printed to STDOUT.

Switch on testing of Fortran compiler and linking to external
libraries.

Turn on verbose echoing of settings made by configure.

Echo the repository tag name used to check out this CAM source
tree.
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Surface components

Options for surface components used in standalone CAM mode:

-icefcice|sice]

-I'nd[cl m|sl nd]

-ocn [docn |socn |dom|aquapl anet ]

-rof [rtm|srof ]

CAM standalone build

Options for building CAM via standalone scripts:

-cam bl d<dir>

- Cam exe <nane>

-cam exedir <dir>

- CcC <nane>

-cflags <string>

- debug

-esnf_libdir <dir>

-f ¢ <nane>

-fc_type[pgi |l ahey |intel |pathscal e|

gnu | x| f]

Specify the sea ice component. Default:
ci ce.

Specify the land component. Default: cl m

Specify ocean component. If set to
aquapl anet then the stubice (si ce) and
stubb land (s| nd) components are implied.
Default: docn.

Specify the river runoff component. Default:
rtm

Directory where CAM will be built. This
is where configure will write the output
files it generates (Makefile, Filepath, etc...).
Default: ./

Name of the CAM executable. Default: cam

Directory where CAM executable will be
created. Default: CAM build directory.

User specified C compiler. Default; Depends
on the OS and the Fortran compiler.

A string of user specified C compiler options
appended to the default options set in
Makefile.

Switch to turn on building CAM with
compiler options for debugging. The specific
options are compiler dependent. These flags
aresetinthe Makef i | e. i n templatefile.

Directory containing ESMF library and the
esnf . nk file. If this option is specified
then the external ESMF library will be used
in place of the ESMF-WRF time manager
code which is provided in the CESM source
distribution.

User specified Fortran compiler. Default:
Depends on the OS and whether MPI is
enabled.

Type of the Fortran compiler. This argument
isused in conjunction with the- f ¢ argument
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-fflags <string>

-fopt <string>

- gnmake <name>

-lapack_libdir <dir>

-1 dfl ags <string>

-li nker <nane>

-npi _i nc <dir>
-nmpi _lib<dir>
-nc_inc<dir>
-nc_lib<dir>
-nc_nod <di r>
-pnc_inc <dir>
-pnc_lib<dir>

-rad_dri ver

-target _os <nane>

-usr_src<dirl>[,<dir2>,<dir3>...]1]]

when the name of the fortran compiler refers
to a wrapper script (e.g., mpifo0 or ftn). In
this case the user needs to specify the type of
Fortran compiler that is being invoked by the
wrapper script. Default; Depends onthe name
of the Fortran compiler.

A string of user specified Fortran compiler
options appended to the default options set
in the Makefile. See - fopt to override
optimization flags.

A string of user specified Fortran compiler
optimization flags. Overrides Makefile
defaullts.

Name of the GNU make program on your
system. Supply the absolute pathname if the
program isnot in your path (or fix your path).
Thisisonly needed by configurefor running
testsviathe-t est option.

Directory containing LAPACK library.

A dtring of user specified load options.
Appended to Makefile defaullts.

User specified linker. Default: usethe Fortran
compiler.

Directory containing MPI include files.
Directory containing MPI library.

Directory containing NetCDF include files.
Directory containing NetCDF library.
Directory containing NetCDF module files.
Directory containing PnetCDF include files.
Directory containing PnetCDF library.

Build CAM with the offline radiation driver.
This produces an executable that can only be
used for offline radiation calculations.

Override the OS setting for cross
platform compilation from the following list
[ai x]i ri x|l i nux|bgl |bgp ]. Default: OS
on which configure is executed as defined by
the Perl SOSNAME variable.

Directories containing user source code. Note
that these directories will aso be searched
for modified versions of the files needed by
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the build-namelist script, e.g., the namelist
definition and use case files.

Environment variables recognized by configure

Thefollowing environment variables are recognized by configur e. Note that the command line arguments
for specifying this information always takes precedence over the environment variables.

CASEROOT

ESMF_LI BDIR

| NC_MPI

| NC_NETCDF

| NC_PNETCDF
LAPACK_LI BDI R
LI B_MPI

LI B_NETCDF

LI B_PNETCDF
MCT_LI BDIR

MOD_NETCDF

Directory where a CESM caseis set up. Thisis only used when building
from the CESM scripts to add the SourceMods directory for CAM to the
Fi | epat hfile.

Directory containing the ESMF library.
Directory containing the MPI include files.
Directory containing the NetCDF include files.
Directory containing the PnetCDF include files.
Directory containing the LAPACK library.
Directory containing the MPI library.

Directory containing the NetCDF library.
Directory containing the PnetCDF library.
Directory containing the MCT libraries.

Directory containing the NetCDF module files.
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The build-namelist utility builds namelists (and on occasion other types of input files) which specify run-
time details for CAM and the components it's running with in standalone mode. When executed from the
CESM scriptsit only producesanamelist filefor the CAM component (inthefileat m i n), and anamelist
filefor control of dry deposition which is shared by CAM and CLM (inthefiledrv_fl ds_i n).

The task of constructing a correct namelist has become extremely complex due to the large number of
configurations supported by CAM. Editing namelists by hand is an extremely fragile process due to the
number of variables that need to be set, and to the many interdependencies among them. We stronly
discourage editing namelists by hand. All customizations of the CAM namelist are possible by making
use of the build-namelist command line options.

Some of the important features of build-naméelist are:

» All valid namelist variables are known to build-namelist. So an invalid variable specified by the user
(supplied either by the-i nfi |l e or - nanel i st options) will cause build-namelist to fail with an
error messagetelling which namelist variableisinvalid. Thisisabigimprovement over aruntimefailure
caused by an invalid variable which typically gives no hint as to which variable caused the problem.

* In addition to knowing all valid variable names and their types, build-namelist also knows which
namelist group each variable belongs to. This means that the user only needs to specify variable names
to build-namelist and not the group names. The- i nfi | e and - nanel i st optionstill require valid
namelist syntax as input, but the group name is ignored. So all variables can be put in a single group
with an arbitrary name, for example, "&xxx ... /" where "xxx" is the namelist group name.

 Since build-namelist knows all namelist variables specified by the user it is able to do consistency
checking. In general however, build-namelist assumes that the user is the expert and will not override
a user specification unless there is amajor inconsistency, for example if variables have been set to use
parameterizations which can not be run at the sametime.

 All configurations have namelist variables that must be specified, and build-namelist has a mechanism
to provide default values for these variables. When an appropriate default value cannot be found then
build-namelist will fail with an informative message.

» When running a configuration for the first time there are often many input datasets that may not bein
the local input data directory. In order to facilitate getting the required datasets build-namélist has an
option, -t est, that can be used to produce a complete list of required datasets and report status of
whether or not they are present in the local directory. This list can then be used to obtain the needed
datasets from the CESM SV N input data repository.

One required input for build-namelist is a configuration cache file produced by a previous invocation of
configure(confi g_cache. xm by default). build-namelist looks at thisfile to determine the features
of the CAM executable, such as the dynamica core and horizontal resolution, that affect the default
specificationsfor namelist variables. The default valuesthemselves are specified in thefile $CAM_ROOT/
nodel s/ atnf cani bl d/ naneli st _files/nanelist _defaults cam xnl, and in the use
case files located in the directory $CAM ROOT/ nodel s/ at m cam bl d/ narel i st _fil es/
use_cases/.

Theother requiredinput for build-namelist istheroot directory for theinput datasets. Thisisrequired since
nearly all input filesmust be specified using absolute filepaths, but the defaults are stored asfilepathswhich
are relative to the root directory. It is expected that the actual location of the root directory is something
that will beresolved at runtime. Theway thisisdoneisto either specify it using the- csndat a argument,
or to set the environment variable CSVDATA.
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The methods for setting the values of namelist variables, listed from highest to lowest precedence, are:

1. using specific command-line options, e.g., - case and - r unt ype,

2. usingthe- nanel i st option,

3. setting valuesin afile specified by - i nfi | e,
4. specifying a- use_case option,

5. setting valuesin the namelist defaultsfile.

The first four of these methods for specifying namelist variables are the ones available to the user without
requiring code modification. Any namelist variable recognized by CAM can be modified using method 2
or 3. Thefina two methods represent defaults that are hard coded as part of the code base.

Options to build-namelist

Togetalist of al available options, typebui | d- namel i st - - hel p. Available optionsare aso listed

just below.

The following options may all be specified with either one or two leading dashes, e.g., - hel p or - -
hel p. The few options that can be expressed as single |etter switches may not be clumped, eg.,-h -s
- v may NOT be expressed as - hsv. When multiple options are listed separated by a vertical bar either

version may be used.

- case <nane>

-cice_nl <nanelist>

-config<fil epath>

-config _cice<fil epath>

-csmdat a <di r>

-dir <dir>

Caseidentifier up to 80 characters. Thisvalue
is used to set the case name variable in the
driver namelist. Default: canT un

Specify namelist settings for CICE directly
on the commandline by supplying a string
containing FORTRAN namelist syntax, e.g.,
-cice_nl "& ce histfreg=1 /".
Thisnamelist will be passed to theinvocation
of the CICE build-namelist via its -
nanel i st argument.

Read the specified configuration cache file
to determine the configuration of the CAM
executable. Default: conf i g_cache. xni .

Filepath of the CICE config_cache file. This
filepath is passed to the invocation of the
CICE build-namelist. Only specify this to
override the default filepath which was set
when the CICE configur ewasinvoked by the
CAM configure.

Root directory of CESM input data. Can also
be set by using the CSMDATA environment
variable.

Directory where output namelist filesfor each
component will be written, i.e.,, atm.in,
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drv_in,ice_in,Ind_inandocn_in.
Default: current working directory.

-help | -h Print usage to STDOUT.

-ignore_ic_date Ignore the date attribute of the initial
condition files when determining the default.

-ignore_ic_year Ignore just the year part of the date attribute
of theinitial condition fileswhen determining
the defaullt.

-infile<filepath> Specify a file containing namelists to read
values from.

-inputdatac<fil epat h> Writes out a list of pathnames for required

input datasets to the specified file.

-nanel i st <nanel i st> Specify namelist  settings  directly
on the commandline by supplying
a string containing FORTRAN
namelist syntax, eg., -nanelist
"&atm stop_opti on=' ndays’
stop_n=10 /"

- nt asks <n> Specify the number of MPI tasks to be used
by the run. Thisis only used to set a default
decomposition for the FV dycore, i.e, the

npr_yz variable.
-runtype [start uplconti nuelbranch] Type of simulation. Default: st ar t up.
-silent | -s Turns on silent mode - only fatal messages
issued.
-test Enable checking that input datasets exist on

local filesystem. This is aso a convenient
way to generate a list of the required input
datasets for amodel run.

- use_case <nane> Specify ause case.

-verbose | -v Turn on verbose echoing of informational
messages.

-version Echo the source code repository tag name

used to check out this CAM distribution.

Environment variables used by build-namelist

The environment variables recognized by build-namelist are presented below.

CSMVDATA Root directory of CESM input data. Note that the commandline
argument - csndat a takes precedence over the environment
variable.
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OVP_NUM THREADS If values of the specific variables that set the thread count
for each component, i.e, at m nt hr eads, cpl _nt hr eads,
i ce_nt hreads, | nd_nt hr eads, or ocn_nt hr eads, are set
via the - nanel i st, or -i nfil e options, then these values
have highest precedence. The OMP_NUM THREADS environment
variable has next highest precedence for setting any of the
component specific thread count variables. Lowest precedence for
setting these variablesisthevalue of nt hr eads from the configure
cachefile.

CAM Namelist variables

A searchable (or browsable) page containing all CAM namelist variablesis here [/cgi-bin/eaton/namelist/
nldef2html-cam5_3].
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