
CESM User’s Guide (CESM1.2 Release Series User’s
Guide) (PDF1)

CESM Software Engineering Group (CSEG)
NCAR

CESM User’s Guide (CESM1.2 Release Series User’s Guide) (PDF1)
by CESM Software Engineering Group (CSEG)

Table of Contents
1. Introduction ...1

How To Use This Document...1
CESM Model Version Naming Conventions ..1

CESM Overview...1
CESM Software/Operating System Prerequisites ...2
CESM Components ..3
CESM Component Sets ..8
CESM Grids ...9
CESM Machines ..9
CESM Validation...10

Downloading CESM ..10
Downloading the code and scripts - starting with CESM1.2.110
Obtaining new release versions of CESM - prior to CESM1.2.112
Downloading input data ...13

Quick Start (CESM Workflow) ...14
2. Creating and Setting Up A Case ..17

How to create a new case ..17
New Component Set Naming Convention...17
New Overall Model Grid Naming Convention ...17
Using create_newcase ..18

How to set up a case and customize the PE layout...21
Calling cesm_setup ..21
Changing the PE layout ...23

Multi-instance component functionality ..24
Modifying an xml file ..27
Cloning a case (Experts only) ...28

3. Building CESM ...31
How do I build my model?...31
Input data ..32

User-created input data ...32
Using the input data server...33

Rebuilding the model ..33
4. Running CESM ...35

Customizing runtime settings ..35
Controlling starting, stopping and restarting a run35
Customizing component-specific namelist settings36
Controlling output data ...41

Load balancing a case ..43
Model timing data ..43
Using model timing data...44

How do I run a case? ...45
Setting the time limits ..45
Submitting the run..46
Restarting a run...47
Data flow during a model run ..48

Testing a case...49
5. Porting and Validating CESM on a new platform..51

Porting Overview...51
Step 1: Use create_newcase with a userdefined machine name..........................52
Step 2: Enabling out-of-the box capability for your machine53
Step 3: Port Validation ...54

iii

6. Use Cases and FAQs...57
BASICS: A basic example..57
BASICS: How do I set up a branch or hybrid run? ...57
BASICS: What calendars are supported in CESM? ...58
BASICS: How do I change processor counts and component layouts on

processors?...59
BASICS: What are CESM xml variables and CESM environment variables? ...60
BASICS: How do I modify the value of CESM xml variables?............................61
BASICS: Why aren’t my $CASEROOT xml variable changes working?61
BASICS: How do I run multiple cases all using a single executable?62
BASICS: How do I use the ESMF library and ESMF interfaces?.........................62
BASICS: Why is there file locking and how does it work?64
BASICS: What are the directories and files in my case directory?64
IO: What is pio? ..66
IO: How do I use pnetcdf? ..67
CAM: How do I customize CAM output fields? ...67
CAM: How do I customize CAM forcings? ...68
CAM/CLM: How do I change history file output frequency and content for

CAM and CLM during a run? ..69
CAM: How do I use B compset history output to create SST/ICE data files to

drive an F compset?..70
POP/CICE: How are CICE and POP decompositions set and how do I

override them? ..72
POP: How do I initialize POP2 with a spun-up initial condition?73
DRIVER: Is there more information about the coupler/driver implementation?

74
DRIVER: How do I pass in new fields between components?............................74
EXPERTS: How do I add a new user-defined component set?76
EXPERTS: How do I add a new user-defined grid?..79
EXPERTS: How do I carry out data assimilation using CAM and DART?83
EXPERTS: How do I add a new CESM model component?84

7. CESM Testing ..89
Testing overview ..89
Using create_production_test ..89
Using query_tests ..89
Using create_test ..90
Debugging Tests That Fail...93

8. Troubleshooting ..95
Troubleshooting create_newcase ...95
Troubleshooting job submission problems...95
Troubleshooting runtime problems ...95
Additional Troubleshooting Information ...97

Glossary ..99

iv

Chapter 1. Introduction

How To Use This Document
This guide instructs both novice and experienced users on building and running
CESM. If you are a new user, we recommend that the introductory sections be read
before moving onto other sections or the Quick Start procedure. This document is
written so that, as much as possible, individual sections stand on their own and the
user’s guide can be scanned and sections read in a relatively ad hoc order. In addi-
tion, the web version provides clickable links that tie different sections together.

The chapters attempt to provide relatively detailed information about specific aspects
of CESM such as setting up a case, building the model, running the model, porting,
and testing. There is also a large section of use cases and FAQs.

Throughout the document, this presentation style indicates shell
commands and options, fragments of code, namelist variables, etc.
Where examples from an interactive shell session are presented,
lines starting with ’>’ indicate the shell prompt.

Please feel free to provide feedback to CESM about how to improve the documenta-
tion.

CESM Model Version Naming Conventions
CESM model release versions include three numbers separated by a dot (.) - CESM
X.Y.Z

• X - corresponds to the major release number indicating significant science changes.

• Y - corresponds to the addition of new infrastructure and new science capabilities
for targeted components.

• Z - corresponds to release bug fixes and machine updates.

CESM Overview
The Community Earth System Model (CESM) is a coupled climate model for sim-
ulating Earth’s climate system. Composed of separate models simultaneously sim-
ulating the Earth’s atmosphere, ocean, land, land-ice, and sea-ice, plus one central
coupler component, CESM allows researchers to conduct fundamental research into
the Earth’s past, present, and future climate states.

The CESM system can be configured a number of different ways from both a science
and technical perspective. CESM supports numerous resolutions1, and component
configurations2. In addition, each model component has input options to configure
specific model physics and parameterizations. CESM can be run on a number of dif-
ferent hardware platforms3, and has a relatively flexible design with respect to pro-
cessor layout of components. CESM also supports both an internally developed set
of component interfaces and the ESMF compliant component interfaces (See the Sec-
tion called BASICS: How do I use the ESMF library and ESMF interfaces? in Chapter
6)

The CESM project is a cooperative effort among U.S. climate researchers. Primar-
ily supported by the National Science Foundation (NSF) and centered at the Na-
tional Center for Atmospheric Research (NCAR) in Boulder, Colorado, the CESM
project enjoys close collaborations with the U.S. Department of Energy and the Na-
tional Aeronautics and Space Administration. Scientific development of the CESM
is guided by the CESM working groups, which meet twice a year. The main CESM

1

Chapter 1. Introduction

workshop is held each year in June to showcase results from the various working
groups and coordinate future CESM developments among the working groups. The
CESM website4 provides more information on the CESM project, such as the manage-
ment structure, the scientific working groups, downloadable source code, and online
archives of data from previous CESM experiments.

CESM Software/Operating System Prerequisites
The following are the external system and software requirements for installing and
running CESM.

• UNIX style operating system such as CNL, AIX and Linux

• csh, sh, and perl scripting languages

• subversion client version 1.4.2 or greater

• Fortran (2003 recommended, 90 required) and C compilers. pgi, intel, and xlf are
recommended compilers.

• MPI (although CESM does not absolutely require it for running on one processor)

• NetCDF 4.2.0 or newer5.

• ESMF 5.2.0 or newer (optional)6.

• pnetcdf 1.2.0 is required and 1.3.1 is recommended7

• Trilinos8 may be required for certain configurations

• LAPACKm9 or a vendor supplied equivalent may also be required for some con-
figurations.

• CMake 2.8.6 or newer10 is required for configurations that include CISM.

The following table contains the version in use at the time of release. These versions
are known to work at the time of the release for the specified hardware.

Table 1-1. Recommmended Software Package Versions by Machine

Machine Version Recommendations

Cray XT Series pgf95 12.4.0

IBM Power Series xlf 12.1, xlC 10.1

IBM Bluegene/P xlf 12.01, xlC 10.01

Linux Machine ifort, icc (intel64) 12.1.4

Caution
NetCDF must be built with the same Fortran compiler as CESM. In
the netCDF build the FC environment variable specifies which Fortran
compiler to use. CESM is written mostly in Fortran, netCDF is written
in C. Because there is no standard way to call a C program from a
Fortran program, the Fortran to C layer between CESM and netCDF will
vary depending on which Fortran compiler you use for CESM. When a
function in the netCDF library is called from a Fortran application, the
netCDF Fortran API calls the netCDF C library. If you do not use the
same compiler to build netCDF and CESM you will in most cases get
errors from netCDF saying certain netCDF functions cannot be found.

Parallel-netCDF, also referred to as pnetcdf, is optional. If a user chooses to use
pnetcdf, version 1.2.0 or later should be used with CESM. It is a library that is file-
format compatible with netCDF, and provides higher performance by using MPI-IO.

2

Chapter 1. Introduction

Pnetcdf is enabled by setting the PNETCDF_PATH variable in the Macros file. You
must also specify that you want pnetcdf at runtime via the io_typename argument
that can be set to either "netcdf" or "pnetcdf" for each component.

CESM Components
CESM consists of seven geophysical models: atmosphere (atm), sea-ice (ice), land
(lnd), river-runoff (rof), ocean (ocn), land-ice (glc), and ocean-wave (wav - stub only),
plus a coupler (cpl) that coordinates the geophysics models time evolution and passes
information between them. Each model may have "active," "data," "dead," or "stub"
component version allowing for a variety of "plug and play" combinations.

During the course of a CESM run, the model components integrate forward in time,
periodically stopping to exchange information with the coupler. The coupler mean-
while receives fields from the component models, computes, maps, and merges this
information, then sends the fields back to the component models. The coupler bro-
kers this sequence of communication interchanges and manages the overall time pro-
gression of the coupled system. A CESM component set is comprised of seven com-
ponents: one component from each model (atm, lnd, rof, ocn, ice, glc, and wav) plus
the coupler. Model components are written primarily in Fortran 90/95/2003.

The active (dynamical) components are generally fully prognostic, and they are state-
of-the-art climate prediction and analysis tools. Because the active models are rela-
tively expensive to run, data models that cycle input data are included for testing,
spin-up, and model parameterization development. The dead components generate
scientifically invalid data and exist only to support technical system testing. The dead
components must all be run together and should never be combined with any active
or data versions of models. Stub components exist only to satisfy interface require-
ments when the component is not needed for the model configuration (e.g., the active
land component forced with atmospheric data does not need ice, ocn, or glc compo-
nents, so ice, ocn, and glc stubs are used).

The CESM components can be summarized as follows:

Model Type Model Name Component
Name

Type Description

atmosphere atm cam active The
Community
Atmosphere
Model (CAM)
is a global
atmospheric
general
circulation
model
developed
from the
NCAR CCM3.

atmosphere atm datm data The data
atmosphere
component is a
pure data
component
that reads in
atmospheric
forcing data

atmosphere atm xatm dead

3

Chapter 1. Introduction

Model Type Model Name Component
Name

Type Description

atmosphere atm satm stub

land lnd clm active The
Community
Land Model
(CLM) is the
result of a
collaborative
project
between
scientists in the
Terrestrial
Sciences
Section of the
Climate and
Global
Dynamics
Division
(CGD) at
NCAR and the
CESM Land
Model
Working
Group. Other
principal
working
groups that
also contribute
to the CLM are
Biogeochem-
istry,
Paleoclimate,
and Climate
Change and
Assessment.

land lnd dlnd data The data land
component no
longer has data
runoff
functionality. It
works as a
purely
data-land
component
(reading in
coupler history
data for
atm/land
fluxes and land
albedos
produced by a
previous run)
or both.

land lnd xlnd dead

land lnd slnd stub

4

Chapter 1. Introduction

Model Type Model Name Component
Name

Type Description

river-runoff rof rtm active The river
transport
model (RTM)
was previously
part of CLM
and was
developed to
route total
runoff from the
land surface
model to either
the active
ocean or
marginal seas
which enables
the hydrologic
cycle to be
closed
(Branstetter
2001,
Branstetter and
Famiglietti
1999). This is
needed to
model ocean
convection and
circulation,
which is
affected by
freshwater
input.

river-runoff rof drof data The data
runoff model
was previously
part of the data
land model
and functions
as a purely
data-runoff
model (reading
in runoff data).

river-runoff rof xrof dead

river-runoff rof srof stub

ocean ocn pop active The ocean
model is an
extension of
the Parallel
Ocean
Program (POP)
Version 2 from
Los Alamos
National
Laboratory
(LANL).

5

Chapter 1. Introduction

Model Type Model Name Component
Name

Type Description

ocean ocn docn data The data ocean
component has
two distinct
modes of
operation. It
can run as a
pure data
model, reading
ocean SSTs
(normally
climatological)
from input
datasets,
interpolating
in space and
time, and then
passing these
to the coupler.
Alternatively,
docn can
compute
updated SSTs
based on a slab
ocean model
where bottom
ocean heat flux
convergence
and boundary
layer depths
are read in and
used with the
atmo-
sphere/ocean
and ice/ocean
fluxes obtained
from the
coupler.

ocean ocn xocn dead

ocean ocn socn stub

6

Chapter 1. Introduction

Model Type Model Name Component
Name

Type Description

sea-ice ice cice active The sea-ice
component
(CICE) is an
extension of
the Los
Alamos
National
Laboratory
(LANL) sea-ice
model and was
developed
though
collaboration
within the
CESM Polar
Climate
Working
Group
(PCWG). In
CESM, CICE
can run as a
fully
prognostic
component or
in prescribed
mode where
ice coverage
(normally
climatological)
is read in.

sea-ice ice dice data The data ice
component is a
partially
prognostic
model. The
model reads in
ice coverage
and receives
atmospheric
forcing from
the coupler,
and then it
calculates the
ice/atmosphere
and ice/ocean
fluxes. The
data ice
component
acts very
similarly to
CICE running
in prescribed
mode.

sea-ice ice xice dead

sea-ice ice sice stub

7

Chapter 1. Introduction

Model Type Model Name Component
Name

Type Description

land-ice glc cism active The CISM
component is
an extension of
the Glimmer
ice sheet
model.

land-ice glc sglc stub

ocean-wave wav xwav dead Support for a
separate ocean
wave
component has
been added to
the system. At
the present
time, only stub
and dead
versions of the
wave model
are available in
this release.
Development
of a prognostic
wave model is
underway, and
it may be
added to the
system at some
future time.

ocean-wave wav swav stub

coupler cpl cpl active The CESM
coupler was
built primarily
through a
collaboration
of the NCAR
CESM
Software
Engineering
Group and the
Argonne
National
Laboratory
(ANL). The
MCT coupling
library
provides much
of the
infrastructure.

CESM Component Sets
The CESM components can be combined in numerous ways to carry out various
scientific or software experiments. A particular mix of components, along with
component-specific configuration and/or namelist settings is called a component

8

Chapter 1. Introduction

set or "compset." CESM has a shorthand naming convention for component sets that
are supported out-of-the-box.

The compset name usually has a well defined first letter followed by some characters
that are indicative of the configuration setup. Each compset name has a correspond-
ing short name. Users are not limited to the predefined component set combinations.
A user may define their own component set.

See supported component sets11 for a complete list of supported compset options.
Running create_newcase with the option "-list" will also always provide a listing of
the supported out-of-the-box component sets for the local version of CESM.

In general, the first letter of a compset name indicates which components are used.
An exception to this rule is the use of "G" as a second letter to indicate use of the
active glc model, CISM.

CESM Grids
The grids are specified in CESM by setting an overall model resolution. Once the
overall model resolution is set, components will read in appropriate grids files
and the coupler will read in appropriate mapping weights files. Coupler mapping
weights are always generated externally in CESM. The components will send the
grid data to the coupler at initialization, and the coupler will check that the
component grids are consistent with each other and with the mapping weights files.

In CESM1.2, the ocean and ice must be on the same grid, but the atmosphere and
land and river runoff can each be on different grids. Each component determines its
own unique grid decomposition based upon the total number of pes assigned to that
component.

CESM supports several types of grids out-of-the-box including single point, finite
volume, spectral, cubed sphere, displaced pole, and tripole. This page, Conservative
Remapping on Spherical Grids12, illustrates a number of these grid types. These grids
are used internally by the models. Input datasets are usually on the same grid but in
some cases, they can be interpolated from regular lon/lat grids in the data models.
The finite volume and spectral grids are generally associated with atmosphere and
land models but the data ocean and data ice models are also supported on those
grids. The cubed sphere grid is used only by the active atmosphere model, cam. And
the displaced pole and tripole grids are used by the ocean and ice models. Not ev-
ery grid can be run by every component. The ocean and ice models run on either a
Greenland dipole or a tripole grid. The Greenland Pole grid13 is a latitude/longitude
grid, with the North Pole displaced over Greenland to avoid singularity problems
in the ocn and ice models. The low-resolution Greenland pole mesh from CCSM3 is
illustrated in Yeager et al., "The Low-Resolution CCSM3", AMS (2006), Figure 1b.,
Web.14 Similarly, the Poseidon tripole grid 15 is a latitude/longitude grid with three
poles that are all centered over land.

CESM1.2 has a completely new naming convention for model resolutions . Using this
naming convention, the complete list of currently supported grid resolutions can be
viewed at supported resolutions page16.

CESM Machines
Scripts for supported machines and userdefined machines are provided with the
CESM release. Supported machines have machine specific files and settings added
to the CESM scripts and are machines that should run CESM cases out-of-the-box.
Machines are supported in CESM on an individual basis and are usually listed by
their common site-specific name. To get a machine ported and functionally supported
in CESM, local batch, run, environment, and compiler information must be config-
ured in the CESM scripts. The machine name "userdefined" machines refer to any
machine that the user defines and requires that a user edit the resulting xml files

9

Chapter 1. Introduction

to fill in information required for the target platform. This functionality is handy in
accelerating the porting process and quickly getting a case running on a new plat-
form. For more information on porting, see Chapter 5. The list of available machines
are documented in CESM supported machines17. Running create_newcase with the
"-list" option will also show the list of available machines for the current local version
of CESM. Supported machines have undergone the full CESM porting process. The
machines available in each of these categories changes as access to machines change
over time.

CESM Validation
Although CESM can be run out-of-the-box for a variety of resolutions, component
combinations, and machines, MOST combinations of component sets, resolutions,
and machines have not undergone rigorous scientific climate validation. Control runs
accompany "scientifically supported" component sets and resolution and are docu-
mented on the release page. These control runs should be scientifically reproducible
on the original platform or other platforms. Bit-for-bit reproducibility cannot be guar-
anteed due to variations in compiler or system versions. Users should carry out their
own validations on any platform prior to doing scientific runs or scientific analysis
and documentation.

Downloading CESM

Downloading the code and scripts - starting with CESM1.2.1
** IMPORTANT NOTE ** Starting with CESM1.2.1, the Subversion repository path has
changed. All documetation for downloading the most current version of the model has been
updated to reflect this change and older version differences are noted.

CESM release code will be made available through a Subversion repository. Access
to the code will require Subversion client software in place that is compatible with
our Subversion server software, such as a recent version of the command line client,
svn. Currently, our server software is at version 1.7.4. We recommend using a client at
version 1.6 or later, though older versions may suffice. We cannot guarantee a client
older than 1.4.2. For more information or to download open source tools, visit:

http://subversion.tigris.org/18

With a valid svn client installed on the machine where CESM will be built and run,
the user may download the latest version of the release code. First view the available
release versions with one of the following commands:

** IMPORTANT NOTE ** Starting with CESM1.2.1, the Subversion repository path
has changed.

> svn list https://svn-ccsm-models.cgd.ucar.edu/cesm1/release_tags

For all versions prior to CESM1.2.1, please use the following command to view avail-
able releases.

> svn list https://svn-ccsm-release.cgd.ucar.edu/model_versions

When contacting the Subversion server for the first time, the following certificate
message will likely be generated:

10

Chapter 1. Introduction

Error validating server certificate for
’https://svn-ccsm-models.cgd.ucar.edu:443’:
- The certificate is not issued by a trusted authority. Use the
fingerprint to validate the certificate manually!

Certificate information:
- Hostname: *.cgd.ucar.edu
- Valid: from Tue, 12 Jun 2012 00:00:00 GMT until Wed, 17 Jun 2015

12:00:00 GMT
- Issuer: www.digicert.com, DigiCert Inc, US
- Fingerprint: eb:30:7d:c5:06:e6:b1:6f:e8:4f:c6:0a:79:6f:af:ec:5c:18:e2:32

(R)eject, accept (t)emporarily or accept (p)ermanently? p

After accepting the certificate, the following authentication message will likely be
generated:

svn list https://svn-ccsm-models.cgd.ucar.edu/cesm1/release_tags
Authentication realm: <https://svn-ccsm-models.cgd.ucar.edu:443> ccsm:models
Password for ’[username]’:
Authentication realm: <https://svn-ccsm-models.cgd.ucar.edu:443D> ccsm:models
Username: guestuser
Password for ’guestuser’:

ATTENTION! Your password for authentication realm:

<https://svn-ccsm-models.cgd.ucar.edu:443> ccsm:models

can only be stored to disk unencrypted! You are advised to configure
your system so that Subversion can store passwords encrypted, if
possible. See the documentation for details.

You can avoid future appearances of this warning by setting the value
of the ’store-plaintext-passwords’ option to either ’yes’ or ’no’ in
’/glade/u/home/[username]/.subversion/servers’.

Store password unencrypted (yes/no)? yes
cesm1_2_1/

Be aware that the request is set to the current machine login id and you must enter the
CESM registered default username of ’guestuser’ by pressing the ’Enter’ key when
prompted for a Username.

You may be prompted up to 3 times for the username and password when checking
out the code for the first time from this new Subversion path. This is because the
code is distributed across a number of different Subversion repositories and each
repository requires authentication.

Once correctly entered, the username and password will be cached in a protected
subdirectory of the user’s home directory so that repeated entry of this information
will not be required for a given machine.

The release tags should follow a recognizable naming pattern, and they can be
checked out from the central source repository into a local sandbox directory. The
following example shows how to checkout model version CESM1.2.1:

> svn co https://svn-ccsm-models.cgd.ucar.edu/cesm1/release_tags/cesm1_2_1 cesm1_2_1

11

Chapter 1. Introduction

Caution
If a problem was encountered during checkout, which may happen with
an older version of the client software, it may appear to have down-
loaded successfully, but in fact only a partial checkout has occurred. To
ensure a successful download, make sure the last line of svn output
has the following statement:

Checked out revision XXXXX.

** IMPORTANT NOTE ** Starting with CESM1.2.1, the Subversion
repository path has changed. Consequently, the information below
regarding ’svn update’ or ’svn switch’ is only valid for CESM releases
prior to CESM1.2.1.

Or, in the case of an ’svn update’ or ’svn switch’:

Updated to revision XXXXX.

This will create a directory called cesm1_2_1 that can be used to modify, build, and
run the model. The following Subversion subcommands can be executed in the work-
ing sandbox directory.

For various information regarding the release version checked out...

> svn info

For a listing of files that have changed since checkout...

> svn status

For a description of the changes made to the working copy...

> svn diff

Obtaining new release versions of CESM - prior to CESM1.2.1
** IMPORTANT NOTE ** Starting with CESM1.2.1, the Subversion repository path has
changed. Consequently, the information below regarding ’svn update’ or ’svn switch’ is only
valid for CESM releases prior to CESM1.2.1. Follow the steps outlined above to upgrade to
CESM1.2.1 from previous versions of the model.

To update to a newer version of the release code you can download a new version of
CESM from the svn central source repository in the following way:

Suppose for example that a new version of CESM is available at https://svn-ccsm-
release.cgd.ucar.edu/model_versions/cesm1_<X_newversion>. This version can be
checked out directly using the same standard CESM download method.

As an alternative, some users may find the svn switch operation useful. In particular,
if you’ve used svn to check out the previous release, cesm1_<X_previousversion>,
and if you’ve made modifications to that code, you should consider using the svn
switch operation. This operation will not only upgrade your code to the version
cesm1_<X_newversion>, but will also attempt to reapply your modifications to the
newer version.

How to use the svn switch operation:

Suppose you’ve used svn to check out cesm1_<X_previousversion> into the directory
called /home/user/cesm1_1_1

12

Chapter 1. Introduction

1. Make a backup copy of /home/user/cesm1_1_1 -- this is important in case you
encounter any problems with the update

2. cd to the top level of your cesm1_1 code tree...
> cd /home/user/cesm1_1_1

3. Issue the following svn command...
> svn switch https://svn-ccsm-release.cgd.ucar.edu/model_versions/cesm1_<X_newversion>

The svn switch operation will upgrade all the code to the new
cesm1_<X_newversion> version, and for any files that have been modified, will
attempt to reapply those modifications to the newer code.

Note that an update to a newer version of the release code may result in conflicts
with modified files in the local working copy. These conflicts will likely require that
differences be resolved manually before use of the working copy may continue. For
help in resolving svn conflicts, please visit the subversion website,

http://svnbook.red-bean.com/en/1.5/svn.tour.cycle.html#svn.tour.cycle.resolve19

A read-only option is available for users to view via a web browser at

https://svn-ccsm-release.cgd.ucar.edu

where the entire CESM release directory tree can be navigated.

The following examples show common problems and their solutions.

Problem 1: If the hostname is typed incorrectly:

> svn list https://svn-ccsm-release.cgd.ucar.edu/model_versions/cesm1_1_<version>
svn: PROPFIND request failed on ’/model_versions/cesm1_1_<version>’
svn: PROPFIND of ’/model_versions/cesm1_1_<version>’: Could not resolve hostname ‘svn-ccsm-releese’: Host not found (https://svn-ccsm-releese)

Problem 2: If http is typed instead of https:

> svn list http://svn-ccsm-release.cgd.ucar.edu/model_versions/cesm1_1_<version>
svn: PROPFIND request failed on ’/model_versions/cesm1_1_<version>’
svn: PROPFIND of ’/model_versions/cesm1_1_<version>’: could not connect to server (http://svn-ccsm-release.cgd.ucar.edu)

Downloading input data
Input datasets are needed to run the model. CESM input data will be made available
through a separate Subversion input data repository. The username and password
for the input data repository will be the same as for the code repository.

Note: The input data repository contains datasets for many configurations and resolutions
and is well over 1 TByte in total size. DO NOT try to download the entire dataset.

Datasets can be downloaded on a case by case basis as needed and CESM now pro-
vides tools to check and download input data automatically.

A local input data directory should exist on the local disk, and it also needs to be
set in the CESM scripts via the variable $DIN_LOC_ROOT. For supported machines,
this variable is preset. For generic machines, this variable is set as an argument to
create_newcase. Multiple users can share the same $DIN_LOC_ROOT directory.

The files in the subdirectories of $DIN_LOC_ROOT should be write-protected. This
prevents these files from being accidentally modified or deleted. The directories in
$DIN_LOC_ROOT should generally be group writable, so the directory can be
shared among multiple users.

13

Chapter 1. Introduction

As part of the process of generating the CESM executable, the utility,
check_input_data is called, and it attempts to locate all required input data for the
case based upon file lists generated by components. If the required data is not found
on local disk in $DIN_LOC_ROOT, then the data will be downloaded automatically
by the scripts or it can be downloaded by the user by invoking check_input_data
with the -export command argument. If you want to download the input data
manually you should do it before you build CESM.

It is possible for users to download the data using svn subcommands directly, but
use of the check_input_data script is highly recommended to ensure that only the
required datasets are downloaded. Again, users are STRONGLY DISCOURAGED
from downloading the entire input dataset from the repository due to the size.

Quick Start (CESM Workflow)
The following quick start guide is for versions of CESM that have already been ported
to the local target machine. If CESM has not yet been ported to the target machine,
please see Chapter 5. If you are new to CESM, please consider reading the introduc-
tion first

These definitions are required to understand this section:

• $COMPSET refers to the component set.

• $RES refers to the model resolution.

• $MACH refers to the target machine.

• $CCSMROOT refers to the CESM root directory.

• $CASE refers to the case name.

• $CASEROOT refers to the full pathname of the root directory where the case
($CASE) will be created.

• $EXEROOT refers to the executable directory. ($EXEROOT is normally NOT the
same as $CASEROOT).

• $RUNDIR refers to the directory where CESM actually runs. This is normally set to
$EXEROOT/run. (Note: changing $EXEROOT does not change $RUNDIR as these
are independent variables.)

This is the procedure for quickly setting up and running a CESM case.

1. Download CESM (see Download CESM).

2. Select a machine, a component set, and a resolution from the list displayed after
invoking this command:
> cd $CCSMROOT/scripts
> create_newcase -list

See the supported component sets21, supported model resolutions22 and
supported machines23. for a complete list of CESM supported component sets,
grids and computational platforms.

3. Create a case.

The create_newcase command creates a case directory containing the scripts and
xml files to configure a case (see below) for the requested resolution, component
set, and machine. create_newcase has several required arguments and if a generic
machine is used, several additional options must be set (invoke create_newcase
-h for help).

If running on a supported machine, ($MACH), then invoke create_newcase as
follows:

14

Chapter 1. Introduction

> create_newcase -case $CASEROOT \
-mach $MACH \
-compset $COMPSET \
-res $RES

If running on a new target machine, see porting in Chapter 5.

4. Setting up the case run script

Issuing the cesm_setup command creates a $CASEROOT/$CASE.run script
along with user_nl_xxx files, where xxx denotes the set of components for
the given case configuration. Before invoking cesm_setup, modify the
env_mach_pes.xml file in $CASEROOT as needed for the experiment.

a. cd to the $CASEROOT directory.
> cd $CASEROOT

b. Modify settings in env_mach_pes.xml (optional). (Note: To edit any of
the env xml files, use the xmlchange command. invoke xmlchange -h for
help.)

c. Invoke the cesm_setup command.
> ./cesm_setup

5. Build the executable.

a. Modify build settings in env_build.xml (optional).

b. Run the build script.
> $CASE.build

6. Run the case.

a. Modify runtime settings in env_run.xml (optional). In particular, set the
$DOUT_S variable to FALSE.

b. Submit the job to the batch queue.
> $CASE.submit

7. When the job is complete, review the following directories and files

a. $RUNDIR. This directory is set in the env_build.xml file. This is the loca-
tion where CESM was run. There should be log files there for every compo-
nent (ie. of the form cpl.log.yymmdd-hhmmss). Each component writes its
own log file. Also see whether any restart or history files were written. To
check that a run completed successfully, check the last several lines of the
cpl.log file for the string " SUCCESSFUL TERMINATION OF CPL7-CCSM
".

b. $CASEROOT/logs. The log files should have been copied into this direc-
tory if the run completed successfully.

c. $CASEROOT. There could be a standard out and/or standard error file.

d. $CASEROOT/CaseDocs. The case namelist files are copied into this direc-
tory from the $RUNDIR.

e. $CASEROOT/timing. There should be a couple of timing files there that
summarize the model performance.

f. $DOUT_S_ROOT/$CASE. This is the archive directory. If $DOUT_S is
FALSE, then no archive directory should exist. If $DOUT_S is TRUE, then
log, history, and restart files should have been copied into a directory tree
here.

15

Chapter 1. Introduction

Notes
1. ../modelnl/grid.html

2. ../modelnl/compsets.html

3. ../modelnl/machines.html

4. http://www2.cesm.ucar.edu/

5. http://www.unidata.ucar.edu/software/netcdf/

6. http://www.earthsystemmodeling.org/

7. http://trac.mcs.anl.gov/projects/parallel-netcdf/

8. http://trilinos.sandia.gov/

9. http://www.netlib.org/lapack/

10. http://www.cmake.org/

11. ../modelnl/compsets.html

12. http://www.image.ucar.edu/staff/rnair/remap.html

13. gx3v7_120309_pole.png

14. http://journals.ametsoc.org/doi/pdf/10.1175/JCLI3744.1

15. http://climate.lanl.gov/Models/POP/

16. ../modelnl/grid.html

17. ../modelnl/machines.html

18. http://subversion.tigris.org

19. http://svnbook.red-bean.com/en/1.5/svn.tour.cycle.html#svn.tour.cycle.resolve

20. https://svn-ccsm-release.cgd.ucar.edu

21. ../modelnl/compsets.html

22. ../modelnl/grid.html

23. ../modelnl/machines.html

16

Chapter 2. Creating and Setting Up A Case

The first step in creating a CESM experiment is to use create_newcase.

How to create a new case
CESM supports out of the box component sets1, model grids2 and hardware
platforms3. Component sets (usually referred to as compsets) define both the
specific model components that will be used in a given CESM configuration, and
any component-specific namelist or configuration settings that are specific to this
configuration. In the CESM1.2 release series (starting with CESM1.2.0) component
sets and resolutions have been significantly changed to permit addressing the
growing model complexity. Both compsets and models grids are now associated
with three names: a new longname, a new short name (that is backwards compatible
with the older CESM1.1 release series long name) and a new alias name (that is
backwards compatible with the older CESM1.1 release series short name).

New Component Set Naming Convention
The new component set (compset) longname has the form

TIME_ATM[%phys]_LND[%phys]_ICE[%phys]_OCN[%phys]_ROF[%phys]_GLC[%phys]_WAV[%phys][_BGC%phys]

TIME = model time period (e.g. 2000, 20TR, RCP8...)
ATM = [CAM4, CAM5, DATM, SATM, XATM]
LND = [CLM40, CLM45, DLND, SLND, XLND]
ICE = [CICE, DICE, SICE, SICE]
OCN = [POP2, DOCN, SOCN, XOCN,AQUAP]
ROF = [RTM, DROF, SROF, XROF]
GLC = [CISM1, SGLC, XGLC]
WAV = [SWAV, XWAV]
BGC = optional BGC scenario

The OPTIONAL %phys attributes specify sub-modes of the given system
For example DOCN%DOM is the DOCN data ocean (rather than slab-ocean) mode.
ALL the possible %phys choices for each component are listed
by the calling create_newcase with the -list compsets argument.
ALL data models now have a %phys option that corresponds to the data
model mode

As an example, the new longname, 20TR_CAM4_CLM40%CN_CICE_POP2_RTM_SGLC_SWAV,
refers to running the prognostic components CAM, CLM, RTM, CICE, POP2 with
stubs SGLC and SWAV components. The particular configuration will be a transient
1850 to 2000 run using cam5 physics, clm4.0 physics with clm4.0 cn, prognostic
cice (default) and pop2 (default). The shortname and alias for this compset are
now B_1850-2000_CAM5_CN and B20TRC5CN, which correspond to the CESM1.1
series longname and shortname, respectively. Any one of the three compset names
(longname, shortname or alias) can be used as input to create_newcase. It is now
also much easier to create your own custom compset (see How do I create my own
compset?). All the out-of-the-box CESM1.2 release series compsets are listed in
component sets4. Upon clicking on any of the long names a pop up box will appear
that provides more details of the component configuration.

New Overall Model Grid Naming Convention
The new model grid longname has the form

a%name_l%name_oi%name_r%name_m%mask_g%name_w%name

17

Chapter 2. Creating and Setting Up A Case

a% = atmosphere grid
l% = land grid
oi% = ocean/sea-ice grid (must be the same)
r% = river grid
m% = land mask grid
g% = internal land-ice (CISM) grid
w% = wave component grid (not relevant in CESM1.2 series)

From the point of view of model coupling - the glc (CISM) grid is assumed to
be identical to the land grid. However, the internal CISM grid can be different,
and is specified by the g% value.

As an example, the new longname, a%ne30np4_l%ne30np4_oi%gx1v6_r%r05_m%gx1v6_g%null_w%null,
refers to running an ne30np4 spectral element 1-degree atmosphere and land grids
a gx1v6 Greenland pole 1-degree ocean and sea-ice grids a 1/2 degree river
routing grid, null wave and internal cism grids and an ocean/land mask that is
determined by the gx1v6 ocean mask. The shortname and alias for this grid are now
ne30np4_gx1v6 and ne30_g16, which correspond to the CESM1.1 series longname
nad shortname respectively. Any one of the three grid names (longname, shortname or
alias) can be used as input to create_newcase. It is now simpler for you to introduce
new user defined grids (see Adding a new user-defined grid). All the out-of-the-box
CESM1.2 release series model grids are listed in grids 5. Upon clicking on any of the
long names a pop up box will appear that provides more details of the model grid.

Component grids (such as the atmosphere grid or ocean grid above) are denoted by
the following naming convention:

• "[dlat]x[dlon]" are regular lon/lat finite volume grids where dlat and dlon are the
approximate grid spacing. The shorthand convention is "fnn" where nn is generally
a pair of numbers indicating the resolution. An example is 1.9x2.5 or f19 for the
approximately "2-degree" finite volume grid. Note that CAM uses an [nlat]x[nlon]
naming convection internally for this grid.

• "Tnn" are spectral lon/lat grids where nn is the spectral truncation value for the
resolution. The shorthand name is identical. An example is T85.

• "ne[X]np[Y]" are cubed sphere resolutions where X and Y are integers. The short
name is generally ne[X]. An example is ne30np4 or ne30.

• "pt1" is a single grid point.

• "gx[D]v[n]" is a displaced pole grid where D is the approximate resolution in de-
grees and n is the grid version. The short name is generally g[D][n]. An example is
gx1v6 or g16 for a grid of approximately 1-degree resolution.

• "tx[D]v[n]" is a tripole grid where D is the approximate resolution in degrees and
n is the grid version.

Using create_newcase
You should first use the -h option in calling create_newcase to document its input op-
tions. In addition, the create_newcase -list [compsets,grids,machine] option can also
be used to see which component sets, model grids, and machines are supported. The
links above, however, provide a much more complete determination. create_newcase
can be called with the following arguments:

create_newcase \
-case case-name \
-compset component-set \

18

Chapter 2. Creating and Setting Up A Case

-res resolution \
-mach machine-name \
[-compiler compiler-name> \
[-mpilib mpi-library-name] \
[-mach_dir alternative pathname for Machines directory] \
[-confopts [_AOA],[AOE],[_D],[_E],[_N],[_P],[_R]] \
[-pecount [S,M,L,X1,X2]] \
[-pes_file full-pathname] \
[-user_compset new user compset long name] \
[-user_grid_file full-pathname of user xml grid file] \
[-help [or -h]] |
[-list [compsets,grids,machines] \
[-silent [or -s]] \
[-verbose [or -v]] \
[-xmlmode [normal, expert]] \
[-nowarning]

Required arguments to create_newcase are -case, -mach, -compset and -res.
If you want to use your own pes setup file, specify the full pathname of that file
for the optional -pes_file argument. The required pes_file format is provided at
$CCSMROOT/scripts/sample_pes_file.xml.

Following is a simple example of using create_newcase: In what follows,
$CCSMROOT is the full pathname of the root directory of the CESM distribution.

> cd $CCSMROOT/scripts
> create_newcase -case ~/cesm/example1 \
-compset B_1850_CAM5_CN \
-res ne30np4_gx1v6 \
-mach yellowstone

This example creates a $CASEROOT directory ~/cesm1/example1 where $CASE is
"example1" with a model resolution of 0.9x1.25_gx1v6 (a 1-degree atmosphere/land
grid with a nominal 1-degree ocean/ice grid using the gx1v6 ocean mask). The
component set B_1850_CN uses fully active components configured to produce a
present-day simulation. The complete example appears in the basic example. $CASE
can include letters, numbers, ".", and "_". Note that create_newcase creates the
$CASEROOT directory. If the directory already exists, it prints a warning and aborts.

As a more general description, create_newcase creates the directory $CASEROOT,
which is specified by the -case option. In $CASEROOT, create_newcase installs files
to build and run the model and perform long term archiving of the case on the target
platform. create_newcase also creates the directory $CASEROOT/Buildconf/, that in
turn contains scripts to generate component namelist and build component libraries.
The table below outlines the files and directories created by create_newcase

Table 2-1. Result of invoking create_newcase

Directory or Filename Description

README.case File detailing your create_newcase
usage. This is a good place for you to
keep track of runtime problems and
changes.

CaseStatus File containing a list of operations done
in the current case.

19

Chapter 2. Creating and Setting Up A Case

Directory or Filename Description
Buildconf/ Directory containing scripts to generate

component namelists and component
and utility libraries (e.g., PIO, MCT).
You should never have to edit the
contents of this directory (unlike in
CESM1.0.5)

SourceMods/ Directory where you can place modified
source code.

LockedFiles/ Directory that holds copies of files that
should not be changed. The xml files are
"locked" after its variables have been
used by other parts of the system and
cannot be changed. The scripts do this
by "locking" a file and not permitting
you to modify that file unless a ’clean’
operation is performend. See the Section
called BASICS: Why is there file locking
and how does it work? in Chapter 6. You
should never edit the contents of this
directory.

Tools/ Directory containing support utility
scripts. You should never need to edit
the contents of this directory.

env_mach_specific File used to set a number of
machine-specific environment variables
for building and/or running. Although
you can edit this at any time, build
environment variables should not be
edited after a build is invoked.

env_case.xml Sets case specific variables (e.g. model
components, model and case root
directories) and cannot be modified after
a case has been created. To make
changes, your should re-run
create_newcase with different options.

env_build.xml Sets model build settings, including
component resolutions and component
configuration options (e.g.
CAM_CONFIG_OTPS) where
applicable (see env_build.xml
variables6).

env_mach_pes.xml Sets component machine-specific
processor layout (see the Section called
Changing the PE layout). The settings in
this are critical to a well-load-balanced
simulation (see loadbalancing a run).

env_run.xml Sets run-time settings such as length of
run, frequency of restarts, output of
coupler diagnostics, and short-term and
long-term archiving. See run
initialization variables6, run stop
variables6, run restart control variables6,
for a more complete discussion of
general run control settings.

20

Chapter 2. Creating and Setting Up A Case

Directory or Filename Description
cesm_setup Script used to set up the case (create the

$CASE.run script and user_nl_xxx files)

$CASE.$MACH.build Script to build component and utility
libraries and model executable.

$CASE.$MACH.clean_build Script to remove all object files and
libraries and unlocks Macros and
env_build.xml. This step is required
before a clean build of the system.

$CASE.$MACH.l_archive Script to performs long-term archiving
of output data (see long-term archiving).
This script will only be created if
long-term archiving is available on the
target machine.

xmlchange Utility for modifying values in the xml
files.

preview_namelists Utility to enable users to see their
component namelists in
$CASEROOT/CaseDocs before running
the model. NOTE: the namelists
generated in $CASEROOT/CaseDocs
should not be edited by the user - they
are only their to document model
behavior.

check_input_data Utility that checks for various input
datasets and moves them into place.

create_production_test Utility used to create a test of your case.

For more complete information about the files in the case directory, see the Section
called BASICS: What are the directories and files in my case directory? in Chapter 6

The xml variables in the env_*.xml files are translated into csh environment vari-
ables with the same name by the script $CASEROOT/Tools/ccsm_getenv. Conver-
sion of xml variables to environment variables is used by numerous script utilities
as part of building, and running a given case. It is important to note that you do not
explicitly see this conversion.

Note: Users can only modify the xml variables. Users cannot modify the csh environment
variables directly.

Complete lists of CESM environment variables in the xml files that appear in
$CASEROOT are provided in case variables 6, pe layout variables 7, build-time
variables 8, and run-time variables9.

How to set up a case and customize the PE layout

Calling cesm_setup
The cesm_setup command does the following:

• Creates the Macros file if it does not exist. Calling cesm_setup -clean does not

21

Chapter 2. Creating and Setting Up A Case

remove this file.

• Creates the files, user_nl_xxx, (where xxx denotes the set of components targeted
for the specific case). As an example, for a B_ compset, xxx would denote
[cam,clm,rtm,cice,pop2,cpl]. In CESM1.2, these files are where all user component
namelist modifications are now made. cesm_setup -clean does not remove these files

• Creates the file $CASEROOT/$CASE.run which runs the CESM model and performs
short-term archiving of output data (see running CESM). cesm_setup also contains
the necessary batch directives to run the model on the required machine for the re-
quested PE layout. Any user modifications to env_mach_pes.xml must be done
before cesm_setup is invoked. In the simplest case, cesm_setup can be run with-
out modifying this file and default settings will be then be used. The cesm_setup
command must be run in the $CASEROOT directory.

cesm_setup -clean moves $CASEROOT/$CASE.run and a copy of env_mach_pes.xml
to a time-stamped directory in MachinesHist. The $CASEROOT directory will
now appear as if create_newcase had just been run with the exception that already
created Macros and user_nl_xxx files will not be touched and local modifications
to the env_*.xml files will be preserved. After further modifications are made to
env_mach_pes.xml, cesm_setup must be rerun before you can build and run the
model.

If env_mach_pes.xml variables need to be changed after cesm_setup has been called,
then cesm_setup -clean must be run first, followed by cesm_setup.

The following summarizes the new directories and files that are created by
cesm_setup. For more information about the files in the case directory, see the
Section called BASICS: What are the directories and files in my case directory? in Chapter
6.

Table 2-2. Result of calling cesm_setup

File or Directory Description

Macros File containing machine-specific
makefile directives for your target
platform/compiler. This is only created
the first time that cesm_setup is called.
Calling cesm_setup -clean will not
remove the Macros file once it has been
created.

user_nl_xxx[_NNNN] files Files where all user modifications to
component namelists are made. xxx
denotes the set of components targeted
for the specific case. NNNN goes from
0001 to the number of instances of that
component (see the multiple instance
discussion below). For example, for a B_
compset, xxx would denote
[cam,clm,rtm,cice,pop2,cpl]. For a case
where there is only 1 instance of each
component (default) NNNN will not
appear in the user_nl file names. A
user_nl file of a given name will only be
created once. Calling cesm_setup -clean
will not remove any user_nl files.
Changing the number of instances in the
env_mach_pes.xml will only cause new
user_nl files to be added to
$CASEROOT.

22

Chapter 2. Creating and Setting Up A Case

File or Directory Description
$CASE.run File containing the necessary batch

directives to run the model on the
required machine for the requested PE
layout. Runs the CESM model and
performs short-term archiving of output
data (see running CESM).

CaseDocs/ Directory that contains all the
component namelists for the run. This is
for reference only and files in this
directory SHOULD NOT BE EDITED
since they will be overwritten at build
time and run time.

env_derived File containing environmental variables
derived from other settings. Should not
be modified by the user.

Changing the PE layout
env_mach_pes.xml10 variables determine the number of processors for each compo-
nent, the number of instances of each component and the layout of the components
across the hardware processors. Optimizing the throughput and efficiency of a CESM
experiment often involves customizing the processor (PE) layout for load balancing.
CESM has significant flexibility with respect to the layout of components across dif-
ferent hardware processors. In general, the CESM components -- atm, lnd, ocn, ice,
glc, rof, and cpl -- can run on overlapping or mutually unique processors. Whereas
Each component is associated with a unique MPI communicator, the driver runs on
the union of all processors and controls the sequencing and hardware partitioning.
The component processor layout is via three settings: the number of MPI tasks, the
number of OpenMP threads per task, and the root MPI processor number from the
global set.

For example, the following env_mach_pes.xml settings

<entry id="NTASKS_OCN" value="128" />
<entry id="NTHRDS_OCN" value="1" />
<entry id="ROOTPE_OCN" value="0" />

would cause the ocean component to run on 128 hardware processors with 128 MPI
tasks using one thread per task starting from global MPI task 0 (zero).

In this next example:

<entry id="NTASKS_ATM" value="16" />
<entry id="NTHRDS_ATM" value="4" />
<entry id="ROOTPE_ATM" value="32" />

the atmosphere component will run on 64 hardware processors using 16 MPI tasks
and 4 threads per task starting at global MPI task 32. There are NTASKS, NTHRDS,
and ROOTPE input variables for every component in env_mach_pes.xml. There are
some important things to note.

• NTASKS must be greater or equal to 1 (one) even for inactive (stub) components.

• NTHRDS must be greater or equal to 1 (one). If NTHRDS is set to 1, this generally
means threading parallelization will be off for that component. NTHRDS should
never be set to zero.

23

Chapter 2. Creating and Setting Up A Case

• The total number of hardware processors allocated to a component is NTASKS *
NTHRDS.

• The coupler processor inputs specify the pes used by coupler computation such
as mapping, merging, diagnostics, and flux calculation. This is distinct from the
driver which always automatically runs on the union of all processors to manage
model concurrency and sequencing.

• The root processor is set relative to the MPI global communicator, not the hardware
processors counts. An example of this is below.

• The layout of components on processors has no impact on the science. The scien-
tific sequencing is hardwired into the driver. Changing processor layouts does not
change intrinsic coupling lags or coupling sequencing. ONE IMPORTANT POINT
is that for a fully active configuration, the atmosphere component is hardwired
in the driver to never run concurrently with the land or ice component. Perfor-
mance improvements associated with processor layout concurrency is therefore
constrained in this case such that there is never a performance reason not to over-
lap the atmosphere component with the land and ice components. Beyond that
constraint, the land, ice, coupler and ocean models can run concurrently, and the
ocean model can also run concurrently with the atmosphere model.

• If all components have identical NTASKS, NTHRDS, and ROOTPE set, all compo-
nents will run sequentially on the same hardware processors.

The root processor is set relative to the MPI global communicator, not the hardware
processor counts. For instance, in the following example:

<entry id="NTASKS_ATM" value="16" />
<entry id="NTHRDS_ATM" value="4" />
<entry id="ROOTPE_ATM" value="0" />
<entry id="NTASKS_OCN" value="64" />
<entry id="NTHRDS_OCN" value="1" />
<entry id="ROOTPE_OCN" value="16" />

the atmosphere and ocean are running concurrently, each on 64 processors with the
atmosphere running on MPI tasks 0-15 and the ocean running on MPI tasks 16-79.
The first 16 tasks are each threaded 4 ways for the atmosphere. The batch submission
script ($CASE.run) should automatically request 128 hardware processors, and the
first 16 MPI tasks will be laid out on the first 64 hardware processors with a stride of
4. The next 64 MPI tasks will be laid out on the second set of 64 hardware processors.

If you set ROOTPE_OCN=64 in the preceding example, then a total of 176 processors
would have been requested and the atmosphere would have been laid out on the first
64 hardware processors in 16x4 fashion, and the ocean model would have been laid
out on hardware processors 113-176. Hardware processors 65-112 would have been
allocated but completely idle.

Note: env_mach_pes.xml cannot be modified after "./cesm_setup" has been invoked
without first invoking "cesm_setup -clean". For an example of changing pes, see the
Section called BASICS: How do I change processor counts and component layouts on
processors? in Chapter 6

Multi-instance component functionality
Like the CESM1.1 series, the CESM1.2 series also has the new capability to run multi-
ple component instances under one model executable. The only caveat to this usage
is that if N multiple instances of any one active component is used, then N multiple
instances of ALL active components are required. More details are discussed below.
The primary motivation for this development was to be able to run an ensemble

24

Chapter 2. Creating and Setting Up A Case

Kalman-Filter for data assimilation and parameter estimation (e.g. UQ). However, it
also provides you with the ability to run a set of experiments within a single CESM
executable where each instance can have a different namelist, and have all the output
go to one directory.

In the following an F compset will be used as an illustration. Utilizing the multiple
instance code involves the following steps:

1. create the case
> create_newcase -case Fmulti -compset F -res ne30_g16 -mach hopper
> cd Fmulti

2. Lets assume the following out of the box pe-layout for hopper:
<entry id="NTASKS_ATM" value="128" />
<entry id="NTHRDS_ATM" value="1" />
<entry id="ROOTPE_ATM" value="0" />
<entry id="NINST_ATM" value="1" />
<entry id="NINST_ATM_LAYOUT" value="concurrent" />

<entry id="NTASKS_LND" value="128" />
<entry id="NTHRDS_LND" value="1" />
<entry id="ROOTPE_LND" value="0" />
<entry id="NINST_LND" value="1" />
<entry id="NINST_LND_LAYOUT" value="concurrent" />

<entry id="NTASKS_ICE" value="128" />
<entry id="NTHRDS_ICE" value="1" />
<entry id="ROOTPE_ICE" value="0" />
<entry id="NINST_ICE" value="1" />
<entry id="NINST_ICE_LAYOUT" value="concurrent" />

<entry id="NTASKS_OCN" value="128" />
<entry id="NTHRDS_OCN" value="1" />
<entry id="ROOTPE_OCN" value="0" />
<entry id="NINST_OCN" value="1" />
<entry id="NINST_OCN_LAYOUT" value="concurrent" />

<entry id="NTASKS_GLC" value="128" />
<entry id="NTHRDS_GLC" value="1" />
<entry id="ROOTPE_GLC" value="0" />
<entry id="NINST_GLC" value="1" />
<entry id="NINST_GLC_LAYOUT" value="concurrent" />

<entry id="NTASKS_WAV" value="128" />
<entry id="NTHRDS_WAV" value="1" />
<entry id="ROOTPE_WAV" value="0" />
<entry id="NINST_WAV" value="1" />
<entry id="NINST_WAV_LAYOUT" value="concurrent" />

<entry id="NTASKS_CPL" value="128" />
<entry id="NTHRDS_CPL" value="1" />
<entry id="ROOTPE_CPL" value="0" />

For an F compset, only atm, lnd, rof are full prognostic components. The
ocn is a prescribed data component, cice is a mixed prescribed/prognostic
component (ice-coverage is prescribed) and glc and wav are stub components.
Lets say we want to run 2 instances of CAM in this experiment. The current
implementation of multi-instances will also require you to run 2 instances of
CLM, CICE and RTM. However, you have the flexibility to run either 1 or 2
instances of DOCN (we can ignore glc and wav since they do not do anything
in this compset). To run 2 instances of CAM, CLM, CICE, RTM and DOCN,
all you need to do is to change NINST_ATM, NINST_LND, NINST_ICE,
NINST_ROF and NINST_DOCN above from 1 to 2. This will result in the
following env_mach_pes.xml file:

25

Chapter 2. Creating and Setting Up A Case

<entry id="NTASKS_ATM" value="128" />
<entry id="NTHRDS_ATM" value="1" />
<entry id="ROOTPE_ATM" value="0" />
<entry id="NINST_ATM" value="2" />
<entry id="NINST_ATM_LAYOUT" value="concurrent" />

<entry id="NTASKS_LND" value="128" />
<entry id="NTHRDS_LND" value="1" />
<entry id="ROOTPE_LND" value="0" />
<entry id="NINST_LND" value="2" />
<entry id="NINST_LND_LAYOUT" value="concurrent" />

<entry id="NTASKS_ICE" value="128" />
<entry id="NTHRDS_ICE" value="1" />
<entry id="ROOTPE_ICE" value="0" />
<entry id="NINST_ICE" value="2" />
<entry id="NINST_ICE_LAYOUT" value="concurrent" />

<entry id="NTASKS_ROF" value="128" />
<entry id="NTHRDS_ROF" value="1" />
<entry id="ROOTPE_ROF" value="0" />
<entry id="NINST_ROF" value="2" />
<entry id="NINST_ROF_LAYOUT" value="concurrent" />

<entry id="NTASKS_OCN" value="128" />
<entry id="NTHRDS_OCN" value="1" />
<entry id="ROOTPE_OCN" value="0" />
<entry id="NINST_OCN" value="2" />
<entry id="NINST_OCN_LAYOUT" value="concurrent" />

<entry id="NTASKS_GLC" value="128" />
<entry id="NTHRDS_GLC" value="1" />
<entry id="ROOTPE_GLC" value="0" />
<entry id="NINST_GLC" value="1" />
<entry id="NINST_GLC_LAYOUT" value="concurrent" />

<entry id="NTASKS_CPL" value="128" />
<entry id="NTHRDS_CPL" value="1" />
<entry id="ROOTPE_CPL" value="0" />

As a result of this, you will have 2 instances of CAM, CLM and CICE (pre-
scribed) and RTM, each running concurrently on 64 MPI tasks - and only 1
instance of DOCN.

3. A separate user_nl_xxx_NNNN file (where NNNN is the number of the com-
ponent instances) will be generated when cesm_setup is called. In particular,
calling cesm_setup with the above env_mach_pes.xml file will result in the
following user_nl_* files in $CASEROOT
user_nl_cam_0001
user_nl_cam_0002
user_nl_cice_0001
user_nl_cice_0002
user_nl_clm_0001
user_nl_clm_0002
user_nl_cpl
user_nl_docn_0001
user_nl_docn_0002
user_nl_rtm_0001
user_nl_rtm_0002

and the following *_in_* files and *txt* files in $CASEROOT/CaseDocs:

atm_in_0001
atm_in_0002
docn.streams.txt.prescribed_0001
docn.streams.txt.prescribed_0002

26

Chapter 2. Creating and Setting Up A Case

docn_in_0001
docn_in_0002
docn_ocn_in_0001
docn_ocn_in_0002
drv_flds_in
drv_in
ice_in_0001
ice_in_0002
lnd_in_0001
lnd_in_0002
rof_in_0001
rof_in_0002

The namelist for each component instance can be modified by changing
the corresponding user_nl_xxx_NNNN file for that component instance.
Modifying the user_nl_cam_0002 will result in the namelist changes
you put in to be active ONLY for instance 2 of CAM. To change
the DOCN stream txt file instance 0002, you should place a copy of
docn.streams.txt.prescribed_0002 in $CASEROOT with the name
user_docn.streams.txt.prescribed_0002 and modify it accordlingly.

It is also important to stress the following points:

1. Different component instances can ONLY differ by differences in namelist
settings - they are ALL using the same model executable.

2. Only 1 coupler component is supported in the CESM1.2 series multiple in-
stance implementation.

3. user_nl_* files once they are created by cesm_setup ARE NOT removed by
calling cesm_setup -clean. The same is true for Macros files.

4. In general, you should run multiple instances concurrently (the default set-
ting in env_mach_pes.xml). The serial setting is only for EXPERT USERS in
upcoming development code implementations.

Modifying an xml file
You can edit the xml files directly to change the variable values. However, modifica-
tion of the xml variables is best done using xmlchange in the $CASEROOT directory
since it performs variable error checking as part of changing values in the xml files.
To invoke xmlchange:

xmlchange <entry id>=<value>
-- OR --
xmlchange -id <entry id> -val <name> -file <filename>

[-help] [-silent] [-verbose] [-warn] [-append] [-file]

-id

The xml variable name to be changed. (required)

-val

The intended value of the variable associated with the -id argument. (required)

Note: If you want a single quotation mark ("’", also called an apostrophe) to appear
in the string provided by the -val option, you must specify it as "'".

27

Chapter 2. Creating and Setting Up A Case

-file

The xml file to be edited. (optional)

-silent

Turns on silent mode. Only fatal messages will be issued. (optional)

-verbose

Echoes all settings made by create_newcase and cesm_setup. (optional)

-help

Print usage info to STDOUT. (optional)

Cloning a case (Experts only)
This is an advanced feature provided for expert users. If you are a new user, skip this
section.

If you have access to the run you want to clone, the create_clone command will
create a new case while also preserving local modifications to the case that you want
to clone. You can run the utility create_clone either from $CCSMROOT or from the
directory where you want the new case to be created. It has the following arguments:

-case

The name or path of the new case.

-clone

The full pathname of the case to be cloned.

-silent

Enables silent mode. Only fatal messages will be issued.

-verbose

Echoes all settings.

-help

Prints usage instructions.

Here is the simplest example of using create_clone:

> cd $CCSMROOT/scripts
> create_clone -case $CASEROOT -clone $CLONEROOT

create_clone will preserve any local namelist modifications made in the
user_nl_xxxx files as well as any source code modifications in the SourceMods
tree. Note that the new case directory will be identical to the cloned case
directory except for the original cloned scripts $CASEROOT.$MACH.build,
$CASEROOT.$MACH.clean_build, $CASEROOT.$MACH.run, and
$CASEROOT.$MACH.l_archive, which will have new names in the new case.

Important:: Do not change anything in the env_case.xml file. The $CASEROOT/ direc-
tory will now appear as if create_newcase had just been run -- with the exception that
local modifications to the env_* files are preserved.

Another approach to duplicating a case is to use the information in that case’s
README.case file to create a new case. Note that this approach will not preserve

28

Chapter 2. Creating and Setting Up A Case

any local modifications that were made to the original case, such as source-code or
build-script modifications; you will need to import those changes manually.

Notes
1. ../modelnl/compsets.html

2. ../modelnl/grid.html

3. ../modelnl/machines.html

4. ../modelnl/compsets.html

5. ../modelnl/grid.html

6. ../modelnl/env_case.html

7. ../modelnl/env_mach_pes.html

8. ../modelnl/env_build.html

9. ../modelnl/env_run.html

10. ../modelnl/env_mach_pes.html

29

Chapter 2. Creating and Setting Up A Case

30

Chapter 3. Building CESM

The following summarizes details of building the model exectuable.

How do I build my model?
After calling cesm_setup, you can build the model executable by running
./$CASE.build. Running this will:

1. create the component namelists in $RUNDIR (by calling the
Buildconf/$component.buildnml.csh scripts).

2. check for the required input data sets and download missing data automati-
cally on local disk, and if successful proceed to the following steps.

3. create the necessary utility libraries by calling Buildconf/mct.buildlib,
Buildconf/pio.buildlib and Buildconf/gptl.buildlib and
Buildconf/csm_share.buildlib.

4. create the necessary component libraries by calling
Buildconf/$component.buildexe.csh, where $component is the name

of atm, lnd, rof, ocn, cice, glc and cpl components (which depends on the
compset being used).

5. create the model executable by calling Buildconf/cesm.buildexe.csh.

$CASEROOT/Tools/Makefile and $CASEROOT/Macros (generated by calling
cesm_setup) are used to generate the utility and component libraries and the
model executable. You do not need to change the default build settings to create
the executable. However, since the CESM scripts provide you with a great deal of
flexibility in customizing various aspects of the build process, it is useful to become
familiar with these in order to make optimal use of the system.

The env_build.xml variables1, control various aspects of building the model exe-
cutable. Most of the variables should not be modified by users. Among the variables
that you can modify are EXEROOT, RUNDIR, BUILD_THREADED, DEBUG and
GMAKE_J. Full documentation for each variable is provided in The env_build.xml
variables2.

> cd $CASEROOT
> ./$CASE.build

Diagnostic comments will appear as the build proceeds. The following line indicates
that the component namelists have been generated successfully:

....
CCSM BUILDNML SCRIPT HAS FINISHED SUCCESSFULLY
....

When the required case input data in $DIN_LOC_ROOT has been successfully
checked, you will see:

CCSM PRESTAGE SCRIPT STARTING
...
CCSM PRESTAGE SCRIPT HAS FINISHED SUCCESSFULLY

Finally, the build script generates the utility and component libraries and the model
executable. There should be a line for the mct, pio, and gptl libraries, as well as each
of the components. Each is date stamped, and a pointer to the build log file for that
library or component is shown. Successful completion is indicated by:

CCSM BUILDEXE SCRIPT HAS FINISHED SUCCESSFULLY

31

Chapter 3. Building CESM

The build log files have names of the form $model.bldlog.$datestamp and are located
in $RUNDIR. If they are compressed (indicated by a .gz file extension), then the build
ran successfully.

Invoking $CASE.build creates the following directory structure in $EXEROOT:

$EXEROOT/atm
$EXEROOT/cesm
$EXEROOT/cpl
$EXEROOT/csm_share
$EXEROOT/glc
$EXEROOT/ice
$EXEROOT/lib
$EXEROOT/lnd
$EXEROOT/mct
$EXEROOT/ocn
$EXEROOT/pio
$EXEROOT/rof

The atm/, cesm/, cpl/, glc/, ice/, lnd/, ocn/ and rof/ subdirectories in $EXEROOT
each contain an ’obj/’ directory where the compiled object files for the target model
component is placed. These object files are collected into libraries that are placed
in ’lib/’ along with the mct/mpeu, pio, gptl, and csm_share libraries. Special
include modules are also placed in lib/include. The model executable ’cesm.exe’
is placed directly in $EXEROOT. On the other hand, component namelists,
component logs, output datasets, and restart files are placed in $RUNDIR. It is
important to note that in CESM $RUNDIR and $EXEROOT are independent
variables which are set in the file config_machines.xml in the directory
$CCSMROOT/scripts/ccsm_utils/Machines/.

Input data
All active and data components use input datasets. A local disk needs
$DIN_LOC_ROOT to be populated with input data in order to run CESMwith
these components. For all machines, input data is provided as part of the release
via data from the CESM subversion input data server. However, on supported
machines (and some non-supported machines), data already exists in the default
local filesystem input data area as specified by $DIN_LOC_ROOT (see below).

Input data is handled by the build process as follows:

• The buildnml scripts in Buildconf/i create listings of required component input
datasets in the Buildconf/$component.input_data_list files.

• $CASE.build checks for the presence of the required input data files in the root
directory $DIN_LOC_ROOT. If all required data sets are found on local disk, then
the build can proceed.

• If any of the required input data sets are not found, the build script will abort and
the files that are missing will be listed. At this point, you must obtain the required
data from the input data server using check_input_data with the -export option.

The env_run.xml variables DIN_LOC_ROOT and DIN_LOC_ROOT_CLMFORC de-
termine where you should expect input data to reside on local disk. See the input data
variables3.

User-created input data
If you want to use new user-created dataset(s) and give these dataset(s) names that
are different than the names in $DIN_LOC_ROOT, we recommend using the script
link_dirtree in the directory $CCSMROOT/scripts. link_dirtree creates a virtual copy
of the input data directory by linking one directory tree to another. The full directory

32

Chapter 3. Building CESM

structure of the original directory is duplicated and the files are linked. To use this
script, use the -h optiion for usage.

> cd $CCSMROOT/scripts
> ./link_dirtree -h

link_dirtree can be conveniently used to generate the equivalent of a local copy
of $DIN_LOC_ROOT which can then be populated with user-specified input
datasets. For example, you can first generate a virtual copy of $DIN_LOC_ROOT in
/user/home/newdata with the following command:

> link_dirtree $DIN_LOC_ROOT /user/home/newdata

then incorporate the new dataset(s) directly into the appropriate directory in
/user/home/newdata.

Using the input data server
The script $CASEROOT/check_input_data determines if the required data files for
the case exist on local disk in the appropriate subdirectory of $DIN_LOC_ROOT.
If any of the required datasets do not exist locally, check_input_data provides the
capability for downloading them to the $DIN_LOC_ROOT directory hierarchy via
interaction with the input data server. You can independently verify that the required
data is present locally by using the following commands:

> cd $CASEROOT
> check_input_data -help
> check_input_data -inputdata $DIN_LOC_ROOT -check

If input data sets are missing, you must obtain the datasets from the input data server:

> cd $CASEROOT
> check_input_data -inputdata $DIN_LOC_ROOT -export

Required data files not on local disk will be downloaded through interaction with
the Subversion input data server. These will be placed in the appropriate subdirec-
tory of $DIN_LOC_ROOT. For what to expect when interacting with a Subversion
repository, see downloading input data.

Rebuilding the model
You should rebuild the model under the following circumstances:

If either env_build.xml or Macros has been modified, and/or if code is added to
SourceMods/src.*, then it’s safest to clean the build and rebuild from scratch as
follows,

> cd $CASEROOT
> ./$CASE.clean_build
> ./$CASE.build

If you have ONLY modified the PE layout in env_mach_pes.xml (see setting the PE
layout) then it’s possible that a clean is not required.

> cd $CASEROOT
> $CASE.build

But if the threading has been turned on or off in any component relative to the previ-
ous build, then the build script should fail with the following error

33

Chapter 3. Building CESM

ERROR SMP STATUS HAS CHANGED
SMP_BUILD = a0l0i0o0g0c0
SMP_VALUE = a1l0i0o0g0c0
A manual clean of your obj directories is strongly recommendend
You should execute the following:
./b39pA1.yellowstone.clean_build

Then rerun the build script interactively
---- OR ----
You can override this error message at your own risk by executing
./xmlchange SMP_BUILD=0

Then rerun the build script interactively

and suggest that the model be rebuilt from scratch.

You are responsible for manually rebuilding the model when needed. If there is any
doubt, you should rebuild.

Notes
1. ../modelnl/env_build.html

2. ../modelnl/env_build.html

3. ../modelnl/env_run.html#run_din

34

Chapter 4. Running CESM

To run a CESM case, you must submit the batch script $CASE.run. In addition, you
also need to modify env_run.xml for your particular needs.

The env_run.xml file1 contains variables which may be modified at the initialization
of a model run and during the course of that model run. These variables comprise
coupler namelist settings for the model stop time, model restart frequency, coupler
history frequency and a flag to determine if the run should be flagged as a con-
tinuation run. In general, you only need to set the variables $STOP_OPTION and
$STOP_N. The other coupler settings will then be given consistent and reasonable
default values. These default settings guarantee that restart files are produced at the
end of the model run.

Customizing runtime settings
In the following, we focus on the handling of run control (e.g. length of run, con-
tinuing a run) and output data. We also give a more detailed description of CESM
restarts.

Controlling starting, stopping and restarting a run
The case initialization type is set in env_run.xml. A CESM run can be initialized in
one of three ways; startup, branch, or hybrid.

startup

In a startup run (the default), all components are initialized using baseline states.
These baseline states are set independently by each component and can include
the use of restart files, initial files, external observed data files, or internal ini-
tialization (i.e., a "cold start"). In a startup run, the coupler sends the start date
to the components at initialization. In addition, the coupler does not need an in-
put data file. In a startup initialization, the ocean model does not start until the
second ocean coupling (normally the second day).

branch

In a branch run, all components are initialized using a consistent set of
restart files from a previous run (determined by the $RUN_REFCASE and
$RUN_REFDATE variables in env_run.xml). The case name is generally
changed for a branch run, although it does not have to be. In a branch run,
setting $RUN_STARTDATE is ignored because the model components obtain
the start date from their restart datasets. Therefore, the start date cannot
be changed for a branch run. This is the same mechanism that is used for
performing a restart run (where $CONTINUE_RUN is set to TRUE in the
env_run.xml file).

Branch runs are typically used when sensitivity or parameter studies are re-
quired, or when settings for history file output streams need to be modified
while still maintaining bit-for-bit reproducibility. Under this scenario, the new
case is able to produce an exact bit-for-bit restart in the same manner as a con-
tinuation run if no source code or component namelist inputs are modified.
All models use restart files to perform this type of run. $RUN_REFCASE and
$RUN_REFDATE are required for branch runs.

To set up a branch run, locate the restart tar file or restart directory for
$RUN_REFCASE and $RUN_REFDATE from a previous run, then place those
files in the $RUNDIR directory. See setting up a branch run for an example.

35

Chapter 4. Running CESM

hybrid

A hybrid run indicates that CESM is initialized more like a startup, but
uses initialization datasets from a previous case. This is somewhat analogous
to a branch run with relaxed restart constraints. A hybrid run allows users
to bring together combinations of initial/restart files from a previous case
(specified by $RUN_REFCASE) at a given model output date (specified by
$RUN_REFDATE). Unlike a branch run, the starting date of a hybrid run
(specified by $RUN_STARTDATE) can be modified relative to the reference
case. In a hybrid run, the model does not continue in a bit-for-bit fashion with
respect to the reference case. The resulting climate, however, should be
continuous provided that no model source code or namelists are changed in the
hybrid run. In a hybrid initialization, the ocean model does not start until the
second ocean coupling (normally the second day), and the coupler does a "cold
start" without a restart file.

The variable $RUN_TYPE determines the initialization type. This setting is only im-
portant for the initial run of a production run when the $CONTINUE_RUN variable
is set to FALSE. After the initial run, the $CONTINUE_RUN variable is set to TRUE,
and the model restarts exactly using input files in a case, date, and bit-for-bit con-
tinuous fashion. The variable $RUN_TYPE is the start date (in yyyy-mm-dd format)
either a startup or hybrid run. If the run is targeted to be a hybrid or branch run, you
must also specify values for $RUN_REFCASE and $RUN_REFDATE. All run startup
variables are discussed in run start control variables2.

Before a job is submitted to the batch system, you need to first check that the batch
submission lines in $CASE.run are appropriate. These lines should be checked
and modified accordingly for appropriate account numbers, time limits, and
stdout/stderr file names. You should then modify env_run.xml to determine the
key run-time settings. See controlling run termination3, controlling run restarts4, and
performing model restarts for more details. A brief note on restarting runs. When
you first begin a branch, hybrid or startup run, CONTINUE_RUN must be set to
FALSE. When you successfully run and get a restart file, you will need to change
CONTINUE_RUN to TRUE for the remainder of your run. See performing model
restarts for more details.

By default,

STOP_OPTION = ndays
STOP_N = 5
STOP_DATE = -999

The default setting is only appropriate for initial testing. Before a longer run is
started, update the stop times based on the case throughput and batch queue
limits. For example, if the model runs 5 model years/day, set RESUBMIT=30,
STOP_OPTION= nyears, and STOP_N= 5. The model will then run in five year
increments, and stop after 30 submissions.

Customizing component-specific namelist settings
In your $CASEROOT directory, the subdirectory $CASEROOT/Buildconf contains
files to create the component namelists, build the component libraries and create the
model executable. Buildconf/$component.buildexe.csh creates the component
libraries and Buildconf/$component.buildnml.csh creates the component
namelists. A new feature in the CESM1.1 and CESM1.2 release series is that ALL
CESM components now use a component-specific build-namelist utility (similar to
that of CAM, CLM and CICE in the CESM1.0 series) to generate their respective
model namelists. In addition, CAM, CLM and CICE have an associated configure
utility that sets up compile time configuration options and is also called from the
corresponding Buildconf/*.buildnml.csh (e.g. Buildconf/cam.buildnml.csh).

36

Chapter 4. Running CESM

In the CESM1.2 series, user specific component namelist changes should only be
made only by editing the $CASEROOT/user_nl_xxx files OR by changing xml vari-
ables in env_run.xml5 or env_build.xml6. A full discussion of how to change the
namelist variables for each component is provided below. You can preview the case
component namelists by running preview_namelists in your $CASEROOT. Call-
ing preview_namelists results in the creation of component namelists (e.g. atm_in,
lnd_in, .etc) in $CASEROOT/CaseDocs/. A complete documentation of all model com-
ponent namelists 7 for CESM1.2 releases is now available. The namelist files created in
the CaseDocs/ are there only for user reference and SHOULD NOT BE EDITED since
they are overwritten every time preview_namelists, $CASE.run and $CASE.build
are called. In CESM1.2, (like CESM1.1 but unlike CESM1.0) the only files that you
should modify are in $CASEROOT. No files in Buildconf/ should be changed. The
following represents a summary of controlling and modifying component-specific
run-time settings:

DRV

In CESM1.2, driver namelist8 are in two groups - those that are set
directly from xml variables in env_case.xml9, env_mach_pes.xml10 and
env_run.xml11, and those that are set by the driver build-namelist utility
($CCSMROOT/models/drv/bld/build-namelist) for the target compset and
resolution. Except for the following driver namelist variables (see below),
driver namelist variables that are in env_run.xml can be changed either by
changing the xml variable OR by adding the correct key-word value pair at the
end of user_nl_cpl, where any changes in user_nl_cpl will take precedence
over values set in the xml file. For example, to change eps_frac to 1.0e-15, add
the following line to the end of the user_nl_cpl, "eps_frac = 1.0e-15". To see
the result of this modification to user_nl_cpl call preview_namelists and
verify that this new value appears in CaseDocs/drv_in.
The following namelist variables MAY NOT be changed in user_nl_cpl -
but must be changed in the appropriate $CASEROOT xml file.
XXX refers to ATM,LND,ICE,OCN,ROF,GLC,WAV
======================================
drv namelist => xml variable
variable
======================================
case_name => CASE
username => CCSMUSER
hostname => MACH
model_version => CCSM_REPOTAG
start_type => RUN_TYPE
start_ymd => RUN_STARTDATE
start_tod => START_TOD
XXX_cpl_dt => XXX_NCPL
XXX_ntasks => NTASKS_XXX
XXX_nthreads => NTHRDS_XXX
XXX_rootpe => ROOTPE_XXX
XXX_pestride => PSTRID_XXX
XXX_layout => NINST_XXX_LAYOUT

CAM

CAM’s configure 12 and build-namelist 13 utilities are called
by Buildconf/cam.buildnml.csh. CAM_CONFIG_OPTS14,
CAM_NAMELIST_OPTS15 and CAM_NML_USECASE16 are used to set
compset variables (e.g., "-phys cam5" for CAM_CONFIG_OPTS) and in general
should not be modified for supported compsets. For a complete documentation
of namelist settings, see CAM namelist variables17. To modify CAM namelist
settings, you should add the appropriate keyword/value pair at the end of the
$CASEROOT/user_nl_cam file (see the documentation for each file at the top of
that file). For example, to change the solar constant to 1363.27, modify the
user_nl_cam file to contain the following line at the end "solar_const=1363.27".

37

Chapter 4. Running CESM

To see the result of adding this, call preview_namelists and verify that this new
value appears in CaseDocs/atm_in.

CLM

CLM’s configure18 and build-namelist19 utilities are called by
Buildconf/clm.buildnml.csh. CLM_CONFIG_OPTS20 and
CLM_NML_USE_CASE21 are used to set compset specific variables and in
general should not be modified for supported compsets. For a complete
documentation of namelist settings, see CLM namelist variables22. To modify
CLM namelist settings, you should add the appropriate keyword/value pair at
the end of the $CASEROOT/user_nl_clm file (see the documentation for each file
at the top of that file). To see the result of your change, call preview_namelists
and verify that the changes appear correctly in CaseDocs/lnd_in.

RTM

RTM’s build-namelist utility is called by Buildconf/rtm.buildnml.csh.
For a complete documentation of namelist settings, see RTM namelist
variables23. To modify RTM namelist settings, you should add the appropriate
keyword/value pair at the end of the $CASEROOT/user_nl_rtm file (see the
documentation for each file at the top of that file). To see the result of your
change, call preview_namelists and verify that the changes appear correctly in
CaseDocs/rof_in.

CICE

CICE’s configure24 and build-namelist25 utilities are now called by
Buildconf/cice.buildnml.csh. Note that CICE_CONFIG_OPTS26, and
CICE_NAMELIST_OPTS27 are used to set compset specific variables and in
general should not be modified for supported compsets. For a complete
documentation of namelist settings, see CICE namelist variables28. To modify
CICE namelist settings, you should add the appropriate keyword/value pair
at the end of the $CASEROOT/user_nl_cice file (see the documentation
for each file at the top of that file). To see the result of your change,
call preview_namelists and verify that the changes appear correctly in
CaseDocs/ice_in.

In addition, cesm_setup creates CICE’s compile time block decomposition
variables29 in env_build.xml as follows:

./cesm_setup
⇓

Buildconf/cice.buildnml.csh and $NTASKS_ICE and $NTHRDS_ICE
⇓

env_build.xml variables CICE_BLCKX, CICE_BLCKY, CICE_MXBLCKS, CICE_DECOMPTYPE
CPP variables in cice.buildexe.csh

POP2

See POP2 namelist variables30 for a complete description of the POP2 run-time
namelist variables. Note that OCN_COUPLING, OCN_ICE_FORCING,
OCN_TRANSIENT31 are normally utilized ONLY to set compset specific
variables and should not be edited. For a complete documentation of namelist
settings, see CICE namelist variables32. To modify POP2 namelist settings,
you should add the appropriate keyword/value pair at the end of the
$CASEROOT/user_nl_pop2 file (see the documentation for each file at the top of
that file). To see the result of your change, call preview_namelists and verify
that the changes appear correctly in CaseDocs/ocn_in.

In addition, cesm_setup also generates POP2’s compile time compile time block
decomposition variables33 in env_build.xml as follows:
./cesm_setup

⇓

38

Chapter 4. Running CESM

Buildconf/pop2.buildnml.csh and $NTASKS_OCN and $NTHRDS_OCN
⇓

env_build.xml variables POP2_BLCKX, POP2_BLCKY, POP2_MXBLCKS, POP2_DECOMPTYPE
CPP variables in pop2.buildexe.csh

CISM

See CISM namelist variables34 for a complete description of the CISM run-time
namelist variables. This includes variables that appear both in cism_in
and in cism.config. To modify any of these settings, you should add the
appropriate keyword/value pair at the end of the user_nl_cism file (see the
documentation for each file at the top of that file). To see the result of your
change, call preview_namelists and verify that the changes appear correctly in
CaseDocs/cism_in and CaseDocs/cism.config.

There are also some run-time settings set via env_run.xml, as documented
in CISM run time variables35 - in particular, the model resolution, set via
CISM_GRID. The value of CISM_GRID determines the default value of a
number of other namelist parameters.

DATM

DATM is discussed in detail in Data Model’s User’s Guide36. DATM is normally
used to provide observational forcing data (or forcing data produced by a previ-
ous run using active components) to drive CLM (I compset), POP2 (C compset),
and POP2/CICE (G compset). As a result, DATM variable settings are specific to
the compset that will be targeted.

DATM can be user configured in three different ways.

You can set DATM run-time variables37 my modifying control settings for CLM
and CPLHIST forcing.

You can edit user_nl_datm to change namelist settings namelists settings
by adding all user specific namelist changes in the form of "namelist_var =
new_namelist_value". Note that any namelist variable from shr_strdata_nml
and datm_nml can be modified below using the this syntax. Use
preview_namelists to view (not modify) the output namelist in CaseDocs.

You can modify the contents of a DATM stream txt file. To do this:

• use preview_namelists to obtain the contents of the stream txt files in
CaseDocs

• place a copy of this file in $CASEROOT with the string "user_" prepended

• Make sure you change the permissions of the file to be writeable (chmod
644)

• Modify the user_datm.streams.txt.* file.

As an example, if the stream txt file in CaseDocs/ is
datm.streams.txt.CORE2_NYF.GISS, the modified copy in $CASEROOT
should be user_datm.streams.txt.CORE2_NYF.GISS. After calling
preview_namelists again, you should see your new modifications appear in
CaseDocs/datm.streams.txt.CORE2_NYF.GISS.

DOCN

DOCN is discussed in detail in Data Model’s User’s Guide38.

DOCN running in prescribed mode assumes that the only field in the input
stream is SST and also that SST is in Celsius and must be converted to Kelvin. All
other fields are set to zero except for ocean salinity, which is set to a constant ref-
erence salinity value. Normally the ice fraction data (used for prescribed CICE)
is found in the same data files that provide SST data to the data ocean model
since SST and ice fraction data are derived from the same observational data sets
and are consistent with each other. For DOCN prescribed mode, default yearly

39

Chapter 4. Running CESM

climatological datasets are provided for various model resolutions. For multi-
year runs requiring AMIP datasets of sst/ice_cov fields, you need to set the vari-
ables for DOCN_SSTDATA_FILENAME, DOCN_SSTDATA_YEAR_START, and
DOCN_SSTDATA_YEAR_END39. CICE in prescribed mode also uses these val-
ues.

DOCN running as a slab ocean model is used (in conjunction with CICE run-
ning in prognostic mode) in all E compsets. SOM ("slab ocean model") mode is
a prognostic mode. This mode computes a prognostic sea surface temperature
and a freeze/melt potential (surface Q-flux) used by the sea ice model. This cal-
culation requires an external SOM forcing data file that includes ocean mixed
layer depths and bottom-of-the-slab Q-fluxes. Scientifically appropriate bottom-
of-the-slab Q-fluxes are normally ocean resolution dependent and are derived
from the ocean model output of a fully coupled run. Note that while this mode
runs out of the box, the default SOM forcing file is not scientifically appropriate
and is provided for testing and development purposes only. Users must create
scientifically appropriate data for their particular application. A tool is available
to derive valid SOM forcing.

DOCN can be user-customized in three ways.

You can set DOCN run-time variables40.

You can edit user_nl_docn to change namelist settings by adding all user spe-
cific namelist changes in the form of "namelist_var = new_namelist_value". Note
that any namelist variable from shr_strdata_nml and datm_nml can be modified
below using the this syntax. Use preview_namelists to view (not modify) the
output namelist in CaseDocs.

You can modify the contents of a DOCN stream txt file. To do this:

• use preview_namelists to obtain the contents of the stream txt files in
CaseDocs/

• place a copy of this file in $CASEROOT with the string "user_" prepended

• Make sure you change the permissions of the file to be writeable (chmod
644)

• Modify the user_docn.streams.txt.* file.

As an example, if the stream text file in CaseDocs/ is
doc.stream.txt.prescribed, the modified copy in $CASEROOT should be

user_docn.streams.txt.prescribed. After changing this file and calling
preview_namelists again, you should see your new modifications appear in
CaseDocs/docn.streams.txt.prescribed.

DICE

DICE is discussed in detail in Data Model’s User’s Guide41.

DICE can be user-customized in three ways.

You can set DICE run-time variables42.

You can edit user_nl_dice to change namelist settings by adding all user spe-
cific namelist changes in the form of "namelist_var = new_namelist_value". Note
that any namelist variable from shr_strdata_nml and datm_nml can be modified
below using the this syntax. Use preview_namelists to view (not modify) the
output namelist in CaseDocs/.

You can modify the contents of a DICE stream txt file. To do this:

• use preview_namelists to obtain the contents of the stream txt files in
CaseDocs/

• place a copy of this file in $CASEROOT with the string "user_" prepended

• Make sure you change the permissions of the file to be writeable (chmod
644)

40

Chapter 4. Running CESM

• Modify the user_dice.streams.txt.* file.

DLND

DLND is discussed in detail in Data Model’s User’s Guide43. The data land
model is different from the other data models because it can run as a purely
data-land model (reading in coupler history data for atm/land fluxes and land
albedos produced by a previous run), or to read in model output from CLM to
send to CISM.

DLND can be user-customized in three ways:

You can set DLND run-time variables44.

You can edit user_nl_dlnd OR user_nl_dsno depending on the component
set, to change namelist settings namelists settings by adding all user specific
namelist changes in the form of "namelist_var = new_namelist_value". Note that
any namelist variable from shr_strdata_nml and dlnd_nml or dsno_nml can be
modified below using the this syntax. Use preview_namelists to view (not mod-
ify) the output namelist in CaseDocs/.

You can modify the contents of a DLND stream txt file. To do this:

• use preview_namelists to obtain the contents of the stream txt files in
CaseDocs/

• place a copy of this file in $CASEROOT with the string "user_" prepended

• Make sure you change the permissions of the file to be writeable (chmod
644)

• Modify the user_dlnd.streams.txt.* file.

DROF

DROF is discussed in Data Model’s User’s Guide45. The data river runoff model
reads in runoff data and sends it back to the coupler. In general, the data river
runoff model is only used to provide runoff forcing data to POP2 when running
C or G compsets

DROF can be user-customized in three ways:

You can set DROF run-time variables46.

You can edit user_nl_drof to change namelist settings namelists settings
by adding all user specific namelist changes in the form of "namelist_var =
new_namelist_value". Note that any namelist variable from shr_strdata_nml
and drof_nml can be modified using the this syntax. Use preview_namelists to
view (not modify) the output namelist in CaseDocs/.

You can modify the contents of a DROF stream txt file. To do this:

• use preview_namelists to obtain the contents of the stream txt files in
CaseDocs/

• place a copy of this file in $CASEROOT with the string "user_" prepended

• Make sure you change the permissions of the file to be writeable (chmod
644)

• Modify the user_drof.streams.txt.* file.

41

Chapter 4. Running CESM

Controlling output data
During a model run, each CESM component produces its own output datasets con-
sisting of history, restart and output log files. Component history files and restart files
are in netCDF format. Restart files are used to either exactly restart the model or to
serve as initial conditions for other model cases.

Archiving is a phase of a CESM model run where the generated output data is moved
from $RUNDIR to a local disk area (short-term archiving) and subsequently to a long-
term storage system (long-term archiving). It has no impact on the production run
except to clean up disk space and help manage user quotas. Although short-term
and long-term archiving are implemented independently in the scripts, there is a de-
pendence between the two since the short-term archiver must be turned on in order
for the long-term archiver to be activated. In env_run.xml, several variables control
the behavior of short and long-term archiving. See short and long term archiving47

for a description of output data control variables. Several important points need to
be made about both short and long term archiving:

• By default, short-term archiving is enabled and long-term archiving is disabled.

• All output data is initially written to $RUNDIR.

• Unless a user explicitly turns off short-term archiving, files will be moved to
$DOUT_S_ROOT at the end of a successful model run.

• If long-term archiving is enabled, files will be moved to $DOUT_L_MSROOT by
$CASE.l_archive, which is run as a separate batch job after the successful comple-
tion of a model run.

• Users should generally turn off short term-archiving when developing new CESM
code.

• If long-term archiving is not enabled, users must monitor quotas and usage in the
$DOUT_S_ROOT/ directory and should manually clean up these areas on a fre-
quent basis.

Standard output generated from each CESM component is saved in a "log file" for
each component in $RUNDIR. Each time the model is run, a single coordinated dat-
estamp is incorporated in the filenames of all output log files associated with that run.
This common datestamp is generated by the run script and is of the form YYMMDD-
hhmmss, where YYMMDD are the Year, Month, Day and hhmmss are the hour,
minute and second that the run began (e.g. ocn.log.040526-082714). Log files are also
copied to a user specified directory using the variable $LOGDIR in env_run.xml.
The default is a ’logs’ subdirectory beneath the case directory.

By default, each component also periodically writes history files (usually monthly)
in netCDF format and also writes netCDF or binary restart files in the $RUNDIR
directory. The history and log files are controlled independently by each compo-
nent. History output control (i.e. output fields and frequency) is set in the Build-
conf/$component.buildnml.csh files.

The raw history data does not lend itself well to easy time-series analysis. For exam-
ple, CAM writes one or more large netCDF history file(s) at each requested output
period. While this behavior is optimal for model execution, it makes it difficult to an-
alyze time series of individual variables without having to access the entire data vol-
ume. Thus, the raw data from major model integrations is usually postprocessed into
more user-friendly configurations, such as single files containing long time-series of
each output fields, and made available to the community.

As an example, for the following example settings

DOUT_S = TRUE
DOUT_S_ROOT = /ptmp/$user/archive
DOUT_L_MS = TRUE
DOUT_L_MSROOT /USER/csm/$CASE

42

Chapter 4. Running CESM

the run will automatically submit the $CASE.l_archive to the queue upon its comple-
tion to archive the data. The system is not bulletproof, and you will want to verify at
regular intervals that the archived data is complete, particularly during long running
jobs.

Load balancing a case
Load balancing refers to the optimization of the processor layout for a given model
configuration (compset, grid, etc) such that the cost and throughput will be opti-
mal. Optimal is a somewhat subjective thing. For a fixed total number of proces-
sors, it means achieving the maximum throughput. For a given configuration across
varied processor counts, it means finding several "sweet spots" where the model
is minimally idle, the cost is relatively low, and the throughput is relatively high.
As with most models, increasing total processors normally results in both increased
throughput and increased cost. If models scaled linearly, the cost would remain con-
stant across different processor counts, but generally, models don’t scale linearly and
cost increases with increasing processor count. This is certainly true for CESM. It is
strongly recommended that a user perform a load-balancing exercise on their pro-
posed model run before undertaking a long production run.

CESM has significant flexibility with respect to the layout of components across dif-
ferent hardware processors. In general, there are seven unique models (atm, lnd, rof,
ocn, ice, glc, cpl) that are managed independently in CESM, each with a unique MPI
communicator. In addition, the driver runs on the union of all processors and controls
the sequencing and hardware partitioning.

Please see the section on setting the case PE layout for a detailed discussion of how
to set processor layouts and the example on changing the PE layout .

Model timing data
In order to perform a load balancing exercise, you must first be aware of the different
types of timing information produced by every CESM run. How this information is
used is described in detail in using model timing data.

A summary timing output file is produced after every CESM run. This file is placed
in $CASEROOT/timing/ccsm_timing.$CASE.$date, where $date is a datestamp set
by CESM at runtime, and contains a summary of various information. The following
provides a description of the most important parts of a timing file.

The first section in the timing output, CCSM TIMING PROFILE, summarizes general
timing information for the run. The total run time and cost is given in several metrics
including pe-hrs per simulated year (cost), simulated years per wall day (thoughput),
seconds, and seconds per model day. This provides general summary information
quickly in several units for analysis and comparison with other runs. The total run
time for each component is also provided, as is the time for initialization of the model.
These times are the aggregate over the total run and do not take into account any
temporal or processor load imbalances.

The second section in the timing output, "DRIVER TIMING FLOWCHART", pro-
vides timing information for the driver in sequential order and indicates which pro-
cessors are involved in the cost. Finally, the timings for the coupler are broken out at
the bottom of the timing output file.

Separately, there is another file in the timing directory, ccsm_timing_stats.$date that
accompanies the above timing summary. This second file provides a summary of the
minimum and maximum of all the model timers.

There is one other stream of useful timing information in the cpl.log.$date file that
is produced for every run. The cpl.log file contains the run time for each model day
during the model run. This diagnostic is output as the model runs. You can search

43

Chapter 4. Running CESM

for tStamp in the cpl.log file to see this information. This timing information is useful
for tracking down temporal variability in model cost either due to inherent model
variability cost (I/O, spin-up, seasonal, etc) or possibly due to variability due to
hardware. The model daily cost is generally pretty constant unless I/O is written
intermittently such as at the end of the month.

Using model timing data
In practice, load-balancing requires a number of considerations such as which com-
ponents are run, their absolute and relative resolution; cost, scaling and processor
count sweet-spots for each component; and internal load imbalance within a com-
ponent. It is often best to load balance the system with all significant run-time I/O
turned off because this occurs very infrequently, typically one timestep per month,
and is best treated as a separate cost as it can bias interpretation of the overall model
load balance. Also, the use of OpenMP threading in some or all of the components
is dependent on the hardware/OS support as well as whether the system supports
running all MPI and mixed MPI/OpenMP on overlapping processors for different
components. A final point is deciding whether components should run sequentially,
concurrently, or some combination of the two with each other. Typically, a series of
short test runs is done with the desired production configuration to establish a rea-
sonable load balance setup for the production job. The timing output can be used to
compare test runs to help determine the optimal load balance.

Changing the pe layout of the model has NO IMPACT on the scientific results. The
basic order of operations and calling sequence is hardwired into the driver and that
doesn’t change when the pe layout is changed. There are some constraints on the
ability of CESM to run fully concurrent. In particular, the atmosphere model always
run sequentially with the ice and land for scientific reasons. As a result, running
the atmosphere concurrently with the ice and land will result in idle processors in
these components at some point in the timestepping sequence. For more informa-
tion about how the driver is implemented, see (Craig, A.P., Vertenstein, M., Jacob,
R., 2012: A new flexible coupler for earth system modeling developed for CCSM4
and CESM1.0. International Journal of High Performance Computing Applications,
26, 31-42, 10.1177/1094342011428141). As of CESM1.1.1, there is a new separate rof
component. That component is implemented in the driver just like the land model. It
can run concurrently with the land model but not concurrently with the atmosphere
model.

In general, we normally carry out 20-day model runs with restarts and history turned
off in order to find the layout that has the best load balance for the targeted number of
processors. This provides a reasonable performance estimate for the production run
for most of the runtime. The end of month history and end of run restart I/O is treated
as a separate cost from the load balance perspective. To set up this test configura-
tion, create your production case, and then edit env_run.xml and set STOP_OPTION
to ndays, STOP_N to 20, and RESTART_OPTION to never. Seasonal variation and
spin-up costs can change performance over time, so even after a production run has
started, it’s worthwhile to occasionally review the timing output to see whether any
changes might be made to the layout to improve throughput or decrease cost.

In determining an optimal load balance for a specific configuration, two pieces of
information are useful.

• Determine which component or components are most expensive.

• Understand the scaling of the individual components, whether they run faster with
all MPI or mixed MPI/OpenMP decomposition strategies, and their optimal de-
compositions at each processor count. If the cost and scaling of the components
are unknown, several short tests can be carried out with arbitrary component pe
counts just to establish component scaling and sweet spots.

One method for determining an optimal load balance is as follows

44

Chapter 4. Running CESM

• start with the most expensive component and a fixed optimal processor count and
decomposition for that component

• test the systems, varying the sequencing/concurrency of the components and the
pe counts of the other components

• identify a few best potential load balance configurations and then run each a few
times to establish run-to-run variability and to try to statistically establish the faster
layout

In all cases, the component run times in the timing output file can be reviewed for
both overall throughput and independent component timings. Using the timing out-
put, idle processors can be identified by considering the component concurrency in
conjunction with the component timing.

In general, there are only a few reasonable component layout options for CESM.

• fully sequential

• fully sequential except the ocean running concurrently

• fully concurrent except the atmosphere run sequentially with the ice, rof, and land
components

• finally, it makes best sense for the coupler to run on a subset of the atmosphere
processors and that can be sequentially or concurrently run with the land and ice

The concurrency is limited in part by the hardwired sequencing in the driver. This
sequencing is set by scientific constraints, although there may be some addition flexi-
bility with respect to concurrency when running with mixed active and data models.

There are some general rules for finding optimal configurations:

• Make sure you have set a processor layout where each hardware processor is as-
signed to at least one component. There is rarely a reason to have completely idle
processors in your layout.

• Make sure your cheapest components keep up with your most expensive compo-
nents. In other words, a component that runs on 1024 processors should not be
waiting on a component running on 16 processors.

• Before running the job, make sure the batch queue settings in the $CASE.run script
are set correctly for the specific run being targetted. The account numbers, queue
names, time limits should be reviewed. The ideal time limit, queues, and run length
are all dependent on each other and on the current model throughput.

• Make sure you are taking full advantage of the hardware resources. If you are
charged by the 32-way node, you might as well target a total processor count that
is a multiple of 32.

• If possible, keep a single component on a single node. That usually minimizes in-
ternal component communication cost. That’s obviously not possible if running on
more processors than the size of a node.

• And always assume the hardware performance could have variations due to con-
tention on the interconnect, file systems, or other areas. If unsure of a timing result,
run cases multiple times.

How do I run a case?

Setting the time limits
Before you can run the job, you need to make sure the batch queue variables are

45

Chapter 4. Running CESM

set correctly for the specific run being targeted. This is done currently by manually
editing $CASE.run. You should carefully check the batch queue submission lines and
make sure that you have appropriate account numbers, time limits, and stdout file
names. In looking at the ccsm_timing.$CASE.$datestamp files for "Model Through-
put", output like the following will be found:

Overall Metrics:
Model Cost: 327.14 pe-hrs/simulated_year (scale= 0.50)
Model Throughput: 4.70 simulated_years/day

The model throughput is the estimated number of model years that you can run
in a wallclock day. Based on this, you can maximize $CASE.run queue limit and
change $STOP_OPTION and $STOP_N in env_run.xml. For example, say a model’s
throughput is 4.7 simulated_years/day. On yellowstone(??), the maximum runtime
limit is 6 hours. 4.7 model years/24 hours * 6 hours = 1.17 years. On the massively
parallel computers, there is always some variability in how long it will take a job to
run. On some machines, you may need to leave as much as 20% buffer time in your
run to guarantee that jobs finish reliably before the time limit. For that reason we will
set our model to run only one model year/job. Continuing to assume that the run is
on yellowstone, in $CASE.yellowstone.run set

#BSUB -W 6:00

and xmlchange should be invoked as follows in CASEROOT:

./xmlchange STOP_OPTION=nyears

./xmlchange STOP_N=1

./xmlchange REST_OPTION=nyears

./xmlchange REST_N=1

Submitting the run
Once you have configured and built the model, submit $CASE.run to your machine’s
batch queue system using the $CASE.submit command.

> $CASE.submit

You can see a complete example of how to run a case in the basic example.

When executed, the run script, $CASE.run:

• Will not execute the build script. Building CESM is now done only via an interac-
tive call to the build script, $CASE.build.

• Will check that locked files are consistent with the current xml files, run the build-
nml script for each component and verify that required input data is present on
local disk (in $DIN_LOC_ROOT).

• Will run the CESM model.

• Upon completion, will put timing information in $LOGDIR/timing and copy log
files back to $LOGDIR

• If $DOUT_S is TRUE, component history, log, diagnostic, and restart files will be
moved from $RUNDIR to the short-term archive directory, $DOUT_S_ROOT.

• If $DOUT_L_MS is TRUE, the long-term archiver, $CASE.l_archive, will be sub-
mitted to the batch queue upon successful completion of the run.

• If $RESUBMIT >0, resubmit $CASE.run

If the job runs to completion, you should have "SUCCESSFUL TERMINATION OF
CPL7-CCSM" near the end of your STDOUT file. New data should be in the subdi-

46

Chapter 4. Running CESM

rectories under $DOUT_S_ROOT, or if you have long-term archiving turned on, it
should be automatically moved to subdirectories under $DOUT_L_MSROOT.

If the job failed, there are several places where you should look for information. Start
with the STDOUT and STDERR file(s) in $CASEROOT. If you don’t find an obvious
error message there, the $RUNDIR/$model.log.$datestamp files will probably give
you a hint. First check cpl.log.$datestamp, because it will often tell you when the
model failed. Then check the rest of the component log files. Please see troubleshoot-
ing runtime errors for more information.

REMINDER: Once you have a successful first run, you must set CONTINUE_RUN
to TRUE in env_run.xml before resubmitting, otherwise the job will not progress.
You may also need to modify the STOP_OPTION, STOP_N and/or STOP_DATE48,
REST_OPTION, REST_N and/or REST_DATE49, and RESUBMIT50 variables in
env_run.xml before resubmitting.

Restarting a run
Restart files are written by each active component (and some data components)
at intervals dictated by the driver via the setting of the env_run.xml variables,
$REST_OPTION and $REST_N. Restart files allow the model to stop and then start
again with bit-for-bit exact capability (i.e. the model output is exactly the same as if
it had never been stopped). The driver coordinates the writing of restart files as
well as the time evolution of the model. All components receive restart and stop
information from the driver and write restarts or stop as specified by the driver.

It is important to note that runs that are initialized as branch or hybrid runs, will
require restart/initial files from previous model runs (as specified by the variables,
$RUN_REFCASE and $RUN_REFDATE). These required files must be prestaged
by the user to the case $RUNDIR (normally $EXEROOT/run) before the model
run starts. This is normally done by just copying the contents of the relevant
$RUN_REFCASE/rest/$RUN_REFDATE.00000 directory.

Whenever a component writes a restart file, it also writes a restart pointer file of the
form, rpointer.$component. The restart pointer file contains the restart filename
that was just written by the component. Upon a restart, each component reads its
restart pointer file to determine the filename(s) to read in order to continue the model
run. As examples, the following pointer files will be created for a component set using
full active model components.

• rpointer.atm

• rpointer.drv

• rpointer.ice

• rpointer.lnd

• rpointer.rof

• rpointer.cism

• rpointer.ocn.ovf

• rpointer.ocn.restart

If short-term archiving is turned on, then the model archives the component restart
datasets and pointer files into $DOUT_S_ROOT/rest/yyyy-mm-dd-sssss, where
yyyy-mm-dd-sssss is the model date at the time of the restart (see below for more
details). If long-term archiving these restart then archived in $DOUT_L_MSROOT/rest.
DOUT_S_ROOT and DOUT_L_MSROOT are set in env_run.xml, and can be
changed at any time during the run.

47

Chapter 4. Running CESM

Backing up to a previous restart
If a run encounters problems and crashes, you will normally have to back up to a
previous restart. Assuming that short-term archiving is enabled, you will need to
find the latest $DOUT_S_ROOT/rest/yyyy-mm-dd-ssss/ directory that was created
and copy the contents of that directory into your run directory ($RUNDIR). You can
then continue the run and these restarts will be used. It is important to make sure the
new rpointer.* files overwrite the rpointer.* files that were in $RUNDIR, or the job
may not restart in the correct place.

Occasionally, when a run has problems restarting, it is because the rpointer files are
out of sync with the restart files. The rpointer files are text files and can easily be
edited to match the correct dates of the restart and history files. All the restart files
should have the same date.

Data flow during a model run
All component log files are copied to the directory specified by the env_run.xml
variable $LOGDIR which by default is set to $CASEROOT/logs. This location is where
log files are copied when the job completes successfully. If the job aborts, the log files
will NOT be copied out of the $RUNDIR directory.

Once a model run has completed successfully, the output data flow will depend on
whether or not short-term archiving is enabled (as set by the env_run.xml variable,
$DOUT_S). By default, short-term archiving will be done.

No archiving
If no short-term archiving is performed, then all model output data will remain in
the run directory, as specified by the env_run.xml variable, $RUNDIR. Furthermore,
if short-term archiving is disabled, then long-term archiving will not be allowed.

Short-term archiving
If short-term archiving is enabled, the component output files will be moved to the
short term archiving area on local disk, as specified by $DOUT_S_ROOT. The di-
rectory DOUT_S_ROOT is normally set to $EXEROOT/../archive/$CASE. and will
contain the following directory structure:

atm/
hist/ logs/

cpl/
hist/ logs/

glc/
logs/

ice/
hist/ logs/

lnd/
hist/ logs/

ocn/
hist/ logs/

rest/
yyyy-mm-dd-sssss/
....
yyyy-mm-dd-sssss/

hist/ contains component history output for the run.

48

Chapter 4. Running CESM

logs/ contains component log files created during the run. In addition to $LOGDIR,
log files are also copied to the short-term archiving directory and therefore are avail-
able for long-term archiving.

rest/ contains a subset of directories that each contain a consistent set of restart files,
initial files and rpointer files. Each sub-directory has a unique name corresponding
to the model year, month, day and seconds into the day where the files were created
(e.g. 1852-01-01-00000/). The contents of any restart directory can be used to create
a branch run or a hybrid run or back up to a previous restart date.

Long-term archiving
For long production runs that generate many giga-bytes of data, you will
normally want to move the output data from local disk to a long-term archival
location. Long-term archiving can be activated by setting $DOUT_L_MS to TRUE
in env_run.xml. By default, the value of this variable is FALSE, and long-term
archiving is disabled. If the value is set to TRUE, then the following additional
variables are: $DOUT_L_MSROOT, $DOUT_S_ROOT DOUT_S (see variables for
output data management).

As was mentioned above, if long-term archiving is enabled, files will be moved out
of $DOUT_S_ROOT to $DOUT_L_ROOT by $CASE.l_archive„ which is run as a
separate batch job after the successful completion of a model run.

Testing a case
After the case has built and has demonstrated the ability to run via a short test, it is
important to formally test exact restart capability before a production run is started.
See the Section called Using create_production_test in Chapter 7 for more informa-
tion about how to use create_production_test.

Notes
1. ../modelnl/env_run.html

2. ../modelnl/env_run.html#run_start

3. ../modelnl/env_run.html#run_stop

4. ../modelnl/env_run.html#run_rest

5. ../modelnl/env_run.html

6. ../modelnl/env_build.html

7. ../modelnl/modelnl.html

8. ../modelnl/nl_drv.html

9. ../modelnl/env_case.html

10. ../modelnl/env_mach_pes.html

11. ../modelnl/env_run.html

12. http://www.cesm.ucar.edu/models/cesm1.1/cam/docs/ug5_2/book1.html

13. http://www.cesm.ucar.edu/models/cesm1.1/cam/docs/ug5_2/book1.html

14. ../modelnl/env_build.html#build_cam

15. ../modelnl/env_run.html#run_cam

16. ../modelnl/env_run.html#run_cam

49

Chapter 4. Running CESM

17. ../modelnl/nl_cam.html

18. http://www.cesm.ucar.edu/models/cesm1.0/clm/models/lnd/clm/doc/UsersGuide/book1.html

19. http://www.cesm.ucar.edu/models/cesm1.0/clm/models/lnd/clm/doc/UsersGuide/book1.html

20. ../modelnl/env_build.html#build_clm

21. ../modelnl/env_run.html#run_clm

22. ../modelnl/nl_clm.html

23. ../modelnl/nl_rtm.html

24. http://www.cesm.ucar.edu/models/cesm1.1/cice/doc/index.html

25. http://www.cesm.ucar.edu/models/cesm1.1/cice/doc/index.html

26. ../modelnl/env_build.html#build_cice

27. ../modelnl/env_run.html#run_cice

28. ../modelnl/nl_cice.html

29. ../modelnl/env_build.html#build_cice

30. ../modelnl/nl_pop2.html

31. ../modelnl/env_run.html#run_pop

32. ../modelnl/nl_cice.html

33. ../modelnl/env_build.html#build_pop2

34. ../modelnl/nl_cism.html

35. ../modelnl/env_run.html#run_cism

36. http://www.cesm.ucar.edu/models/cesm1.1/data8/doc/book1.html

37. ../modelnl/env_run.html#run_datm

38. http://www.cesm.ucar.edu/models/cesm1.1/data8/doc/book1.html

39. ../modelnl/env_run.html#run_sstice

40. ../modelnl/env_run.html#run_docn

41. http://www.cesm.ucar.edu/models/cesm1.1/data8/doc/book1.html

42. ../modelnl/env_run.html#run_dice

43. http://www.cesm.ucar.edu/models/cesm1.1/data8/doc/book1.html

44. ../modelnl/env_run.html#run_dlnd

45. http://www.cesm.ucar.edu/models/cesm1.1/data8/doc/book1.html

46. ../modelnl/env_run.html#run_drof

47. ../modelnl/env_run.html#run_datout

48. ../modelnl/env_run.html#run_stop

49. ../modelnl/env_run.html#run_rest

50. ../modelnl/env_run.html#run_rest

50

Chapter 5. Porting and Validating CESM on a new platform

Porting Overview
One of the first steps many users will have to address is getting the CESM model run-
ning on their local machine. This section will describe the process of going about that.
In short, you should first call create_newcase using a "userdefined" machine name
and get that case running. Second, you should take the results of the previous step
and introduce your machine in the $CCSMROOT/scripts/ccsm_utils/Machines/ di-
rectory so that your local machine is supported out-of-the-box. This greatly eases set-
ting up cases and benefits groups of users by requiring the port be done only once.
Third you should validate the model on your machine.

It is usually very helpful to assure that you can run a basic mpi parallel program
on your machine prior to attempting a CESM port. Understanding how to compile
and run the program fhello_world_mpi.F90 shown here could potentially save many
hours of frustration.

program fhello_world_mpi.F90
use mpi
implicit none
integer (kind = 4) error
integer (kind = 4) id
integer p
character(len=MPI_MAX_PROCESSOR_NAME) :: name
integer clen
integer, allocatable :: mype(:)
real (kind = 8) wtime

call MPI_Init (error)
call MPI_Comm_size (MPI_COMM_WORLD, p, error)
call MPI_Comm_rank (MPI_COMM_WORLD, id, error)
if (id == 0) then

wtime = MPI_Wtime ()

write (*, ’(a)’) ’ ’
write (*, ’(a)’) ’HELLO_MPI - Master process:’
write (*, ’(a)’) ’ FORTRAN90/MPI version’
write (*, ’(a)’) ’ ’
write (*, ’(a)’) ’ An MPI test program.’
write (*, ’(a)’) ’ ’
write (*, ’(a,i8)’) ’ The number of processes is ’, p
write (*, ’(a)’) ’ ’

end if

call MPI_GET_PROCESSOR_NAME(NAME, CLEN, ERROR)

write (*, ’(a)’) ’ ’
write (*, ’(a,i8,a,a)’) ’ Process ’, id, ’ says "Hello, world!" ’,name(1:clen)

call MPI_Finalize (error)

end program

You will want to start with an X (i.e. commonly referred to as dead) compset running
at a low resolution. So you could, for instance, start with an X compset at resolution
f45_g37. This will allow you to determine whether all prerequisite software is in place
and working for a simple parallel CESM configuration that requires minimal input
data. Once that is working move to an A compset with resolution f45_g37. Once that’s
working, run a B compset at resolution f45_g37. Finally when all the previous steps
have run correctly, run your target compset and resolution.

51

Chapter 5. Porting and Validating CESM on a new platform

Step 1: Use create_newcase with a userdefined machine name
This section describes how to set up a case using a userdefined machine name and
then within that case, how to modify the scripts to get that case running on a local
machine.

1. Run create_newcase wtih a "userdefined" machine name. Then run
cesm_setup in the new case directory.
> cd $CCSMROOT/scripts
> create_newcase -case test1 \

-res f45_g37 \
-compset X \
-mach userdefined

> cd test1
> cesm_setup

The output from cesm_setup will indicate which xml variables you are now
required to set.
ERROR: must set xml variable OS to generate Macros file
ERROR: must set xml variable MAX_TASKS_PER_NODE to build the model
ERROR: must set xml variable MPILIB to build the model
ERROR: must set xml variable RUNDIR to build the model
ERROR: must set xml variable DIN_LOC_ROOT to build the model
ERROR: must set xml variable COMPILER to build the model
ERROR: must set xml variable EXEROOT to build the model
Correct above and issue cesm_setup again

The definition of every env variable can be found on the CASEROOT
xml page1. Enter appropriate settings for the above xml variables in
env_build.xml, env_mach_pes.xml and env_run.xml. Calling cesm_setup
again should now produce a Macros file that can be used as a starting point
for your port. In addition build and run scripts will be generated.

2. The next step is to edit the env_mach_specific and Macros files to get ready
to build the model. The string USERDEFINED in these files indicate the lo-
cations where modifications are likely. In particular env_mach_specific is
where modules, paths, or machine environment variables need to be set espe-
cially related to compilers, mpi, and netcdf. Macros is where the Makefile vari-
ables are set. You can find the Makefile in the Tools directory. In the Macros,
modify SLIBS to include whatever machine specific libs are desired and in-
clude the netcdf library or libraries. Then set NETCDF_PATH to the path of
the netcdf directory. This might be a hardwired path or it might be an env vari-
able set in env_mach_specfic or through modules. You might need to modify
other Macros variables such as MPI_PATH, but that depends on your particu-
lar system setup. Often mpi is wrapped in the compiler commands like mpif90
automatically.

As an example, suppose your machine uses Modules (i.e. the Modules package
provides for the dynamic modification of a user’s environment via module-
files). The following setting from env_mach_specific.bluewaters sets the com-
piler and netcdf versions.
invoking modules sets $MPICH_DIR and $NETCDF_DIR
if ($COMPILER == "pgi") then

module load PrgEnv-pgi
module switch pgi pgi/11.10.0

endif
module load torque/2.5.10
module load netcdf-hdf5parallel/4.1.3
module load parallel-netcdf/1.2.0

that produces some env variables which can then be used in the generated
Macros as follows:
MPI_PATH:= $(MPICH_DIR)

52

Chapter 5. Porting and Validating CESM on a new platform

NETCDF_PATH:= $(NETCDF_DIR)

So in this example the system module defines a variable NETCDF_DIR, but
CESM expects NETCDF_PATH to be set and that copy is made in the Macros
file. While CESM supports use of pnetcdf in PIO (which requires setting
PNETCDF_PATH in Macros), it is generally best to ignore that feature during
initial porting. PIO works well with standard NetCDF.

3. Build the case
> ./test1.userdefined.build

This step will often fail if paths to compilers, compiler versions, or libraries are
not set properly, if compiler options are not set properly, or if machine environ-
ment variables are not set properly. Review and edit the env_mach_specific
and Macros files, clean the build,
> ./test1.userdefined.clean_build

and try rebuilding again.

4. Finally /test1.userdefined.run is the job submission or run script. Modifi-
cations are needed to specify the local batch environment and the job launch
command. Again, the string USERDEFINED will indicate where those changes
are needed. Once the batch and launch commands are set, run the model using
your local job submission command. qsub is used here for example.
> qsub test1.userdefined.run

The job will fail to submit if the batch commands are not set properly. The job
could fail to run if the launch command is incorrect or if the batch commands
are not set consistent with the job resource needs. Review the run script and
try resubmitting.

Step 2: Enabling out-of-the box capability for your machine
Once a case is running, then the local setup for the case can be converted into a spe-
cific set of machine files, so future cases can be set up using your local machine name
rather than "userdefined". In addition, new cases should be able to run out-of-the-box
without going through step 1 above. Basically, you will need to add files and modify
files in the directory $CCSMROOT/scripts/ccsm_utils/Machines to support your
machine out-of-the-box. This section describes how to add support for your machine
to the CESM scripts in order to support your machine out-of-the box.

1. Pick a name that will be associated with your machine. Generally, this will be
identical to the name of your machine, but it could be anything. "wilycoyote"
will be used in the description to follow. It is also helpful to identify as a start-
ing point one or more supported machines2 that are similar to your machine.
To add wilycoyote to the list of supported machines, do the following:

2. Edit config_machines.xml and add a section for "wilycoyote". You can
simply copy one of the existing entries and then edit it. The machine specific
env variables that need to be set in config_machines.xml for wilycoyote are
already set in the env files in the test1 case directory that was created from
the userdefined machine. You will need to leverage the variables you used
in the test1 case directory in Step1 above into the config_machines.xml
section for wilycoyote. While the compiler options for a given compiler are
pretty consistent across machines, invoking the compiler and the local paths
for libraries are not. There are several variable settings here. The definition
of these variables can be found in the env_build.xml3, env_run.xml4 and
env_mach_pes.xml5 files. Some of the important ones are MACH which
should be set to wilycoyote, EXEROOT which should be set to a generic
working directory like /tmp/scratch/$CCSMUSER/$CASE shared by and
write accessable to all compute nodes, DIN_LOC_ROOT which should be set

53

Chapter 5. Porting and Validating CESM on a new platform

to the path to the CESM inputdata directory (read accessable to all compute
nodes), BATCHQUERY and BATCHJOBS which specify the query and
submit command lines for batch jobs and are used to chain jobs together in
production, and MAX_TASKS_PER_NODE which set the maximum number
of tasks allowed on each hardware node.

3. Edit config_compilers.xml to translate the additions you made to the
Macros file to support "wilycoyote" specific settings.

4. Create an env_mach_specific.wilycoyote file. This should be a copy of the
env_mach_specific file from the test1 case directory in Step1 above.
> cd $CCSMROOT/scripts/test1
> cp env_mach_specific $CCSMROOT/scripts/ccsm_utils/Machines/env_mach_specific.wilycoyote

5. Create an mkbatch.wilycoyote file. The easiest way to do this is to find a
machine closest to your machine and copy that file to mkbatch.wilycoyote.
Then edit mkbatch.wilycoyote to match the changes made in the
test1.userdefined.run file in the test1 case in Step1. In particular, the batch
commands and the job launching will probably need to be changed. The batch
commands and setup are the first section of the script. The job launching can
be found by searching for the string "CSM EXECUTION".

6. Test the new machine setup. Create a new case based on test1 using the wily-
coyote machine setup
> cd $CCSMROOT/scripts
> create_newcase -case test1_wilycoyote \

-res f45_g37 \
-compset X \
-mach wilycoyote

> cd test1_wilycoyote
> ./cesm_setup
> ./test1_wilycoyote.build
> qsub test1_wilycoyote.run
The point is to confirm that test1_wilycoyote runs fine and is consistent with
the original test1 case. Once that works, test other configurations then move to
port validation, see the Section called Step 3: Port Validation. You should expect
that getting this to work will be an iterative process. Changes will probably
be made in both the config_machines.xml and in config_compilers.xml>
Whenever either of these machine files are updated, a new case should be set
up. Whenever something is changed in the case scripts to fix a problem, that
change should be migrated back to the wilycoyote settings in the machine files.
Once a case is running, those changes in the case need to be backed out into
the wilycoyote machine files and then those machine files can be tested with
a new case. Eventually, the machine files should work for any user and any
configuration for wilycoyote.

Step 3: Port Validation
The following port validation is recommended for any new machine. Carrying out
these steps does not guarantee the model is running properly in all cases nor that the
model is scientifically valid on the new machine. In addition to these tests, detailed
validation should be carried out for any new production run. That means verify-
ing that model restarts are bit-for-bit identical with a baseline run, that the model is
bit-for-bit reproducible when identical cases are run for several months, and that pro-
duction cases are monitored very carefully as they integrate forward to identify any
potential problems as early as possible. These are recommended steps for validating
a port and are largely functional tests. Users are responsible for their own validation
process, especially with respect to science validation.

1. Verify functionality by performing these functionality tests.

54

Chapter 5. Porting and Validating CESM on a new platform

ERS_D.f19_g16.X
ERS_D.T31_g37.A
ERS_D.f19_g16.B1850CN
ERI.ne30_g16.X
ERI.T31_g37.A
ERI.f19_g16.B1850CN
ERS.ne30_ne30.F
ERS.f19_g16.I
ERS.T62_g16.C
ERS.T62_g16.DTEST
ERT.ne30_g16.B1850CN

2. Verify performance and scaling analysis.

a. Create one or two load-balanced configurations to check into
Machines/config_pes.xml for the new machine.

b. Verify that performance and scaling are reasonable.

c. Review timing summaries in $CASEROOT for load balance and
throughput.

d. Review coupler "daily" timing output for timing inconsistencies. As has
been mentioned in the section on load balancing a case , useful timing
information is contained in cpl.log.$date file that is produced for every
run. The cpl.log file contains the run time for each model day during the
model run. This diagnostic is output as the model runs. You can search
for tStamp in this file to see this information. This timing information is
useful for tracking down temporal variability in model cost either due to
inherent model variability cost (I/O, spin-up, seasonal, etc) or possibly
due to variability due to hardware. The model daily cost is generally
pretty constant unless I/O is written intermittently such as at the end of
the month.

3. Perform validation (both functional and scientific):

a. Perform a CAM error growth test6.

b. Follow the CCSM4.0 CICE port-validation procedure.7

c. Follow the CCSM4.0 POP2 port-validation procedure.8

4. Perform two, one-year runs (using the expected load-balanced configuration)
as separate job submissions and verify that atmosphere history files are bfb
for the last month. Do this after some performance testing is complete; you
may also combine this with the production test by running the first year as a
single run and the second year as a multi-submission production run. This will
test reproducibility, exact restart over the one-year timescale, and production
capability all in one test.

5. Carry out a 20-30 year 1.9x2.5_gx1v6 resolution, B_1850_CN compset simula-
tion and compare the results with the diagnostics plots for the 1.9x2.5_gx1v6
Pre-Industrial Control (see the CCSM4.0 diagnostics 9). Model output data for
these runs will be available on the Earth System Grid (ESG) 10 as well.

Notes
1. ../modelnl

2. ../modelnl/machines.html

3. ../modelnl/env_build.html

4. ../modelnl/env_run.html

5. ../modelnl/env_mach_pes.html
55

Chapter 5. Porting and Validating CESM on a new platform

6. http://www.cesm.ucar.edu/models/cesm1.1/cam/docs/port/

7. http://www.cesm.ucar.edu/models/cesm1.0/cice/validation/index.html

8. http://www.cesm.ucar.edu/models/cesm1.0/pop2/validation/index.html

9. http://www.cesm.ucar.edu/experiments/cesm1.0/diagnostics/

10. http://www.cesm.ucar.edu/models/cesm1.0/model_esg/

56

Chapter 6. Use Cases and FAQs

BASICS: A basic example
This specifies all the steps necessary to create, set up, build, and run a case. The
following assumes that $CCSMROOT is /user/ccsmroot.

1. Create a new case named EXAMPLE_CASE in the ~/cesm directory. Use an
1850 control compset at 1-degree resolution on yellowstone.
> cd /user/ccsmroot/scripts
> ./create_newcase -case ~/cesm/EXAMPLE_CASE \

-compset B_1850_CN \
-res 0.9x1.25_gx1v6 \
-mach yellowstone

2. Go to the $CASEROOT directory. Edit env_mach_pes.xml if a different pe-
layout is desired first. Then set up and build the case.
> cd ~/cesm/EXAMPLE_CASE
> ./cesm_setup
> ./EXAMPLE_CASE.build

3. Create a production test. Go to the test directory. Build the test first, then run
the test and check the TestStatus (the first word should be PASS).
> cd ~/cesm/EXAMPLE_CASE
> ./create_production_test
> cd ../EXAMPLE_CASE_ERT
> ./EXAMPLE_CASE_ERT.test_build
> ./EXAMPLE_CASE_ERT.submit
Wait for test to finish.....
> cat TestStatus

4. Go back to the case directory, set the job to run 12 model months, use an editor
to change the time limit in the run file to accommodate a 12-month run, and
submit the job.
> cd ../EXAMPLE_CASE
> xmlchange STOP_OPTION=nmonths
> xmlchange STOP_N=12
> # use an editor to change EXAMPLE_CASE.run "#BSUB -W 4:00" to "#BSUB -W 6:00"
> ./EXAMPLE_CASE.submit

5. Make sure the run succeeded. Look for the following line at the end of the
cpl.log file in your run directory.
(seq_mct_drv): =============== SUCCESSFUL TERMINATION OF CPL7-CCSM ===============

6. Set it to resubmit itself 10 times so that it will run a total of 11 years (including
the initial year), and resubmit the case. (Note that a resubmit will automatically
change the run to be a continuation run).
> xmlchange RESUBMIT=10
> ./EXAMPLE_CASE.submit

BASICS: How do I set up a branch or hybrid run?
The section setting the case initialization discussed starting a new case as a branch
run or hybrid run by using data from a previous run. First you need to create a new
case. Assume that $CCSMROOT is set to /user/ccsmroot and that $EXEROOT is
/glade/scratch/$user/EXAMPLE_CASEp. Finally, assume that the branch or hybrid
run is being carried out on NCAR’s IBM system, yellowstone.

57

Chapter 6. Use Cases and FAQs

> cd /user/ccsmroot/scripts
> create_newcase -case ~/cesm/EXAMPLE_CASEp \

-compset B_2000 \
-res 0.9x1.25_gx1v6 \
-mach yellowstone

> cd ~/cesm/EXAMPLE_CASEp

For a branch run, modify env_run.xml to branch from EXAMPLE_CASE at year
0001-02-01.

> xmlchange RUN_TYPE=branch
> xmlchange RUN_REFCASE=EXAMPLE_CASE
> xmlchange RUN_REFDATE=0001-02-01

For a hybrid run, modify env_run.xml to start up from EXAMPLE_CASE at year
0001-02-01.

> xmlchange RUN_TYPE=hybrid
> xmlchange RUN_REFCASE=EXAMPLE_CASE
> xmlchange RUN_REFDATE=0001-02-01

For a branch run, env_run.xml for EXAMPLE_CASEp should be identical to EX-
AMPLE_CASE, except for the $RUN_TYPE setting. In addition, any modifications
introduced into any of the ~/cesm/EXAMPLE_CASE/user_nl_* files, should be re-
introduced into the corresponding files in EXAMPLE_CASEp.

Set up and build the case executable.

> ./cesm_setup
> ./EXAMPLE_CASEp.build

Prestage the necessary restart/initial data in $RUNDIR (assumed
to be /glade/scratch/$user/EXAMPLE_CASEp/run). Note that
/glade/scratch/$user/EXAMPLE_CASEp/run was created during the build.
Assume that the restart/initial data is on the NCAR HPSS.

> cd /glade/scratch/$user/EXAMPLE_CASEp/run
> hsi -q "cget /CCSM/csm/EXAMPLE_CASE/rest/0001-02-01-00000/*"

It is assumed that you already have a valid load-balanced scenario. Go back to the
case directory, set the job to run 12 model months, use an editor to change the time
limit in the run file to accommodate a 12-month run, then submit the job.

> cd ~/cesm/EXAMPLE_CASEp
> xmlchange STOP_OPTION=nmonths
> xmlchange STOP_N=12
> # use an editor to change EXAMPLE_CASE.run "#BSUB -W 1:30" to "#BSUB -W 6:00"
> ./EXAMPLE_CASEp.submit

Make sure the run succeeded. Look for the following line at the end of the cpl.log file
in your run directory.

(seq_mct_drv): =============== SUCCESSFUL TERMINATION OF CPL7-CCSM ===============

Change the run to a continuation run. Set it to resubmit itself 10 times so that it will
run a total of 11 years (including the initial year), then resubmit the case.

> xmlchange CONTINUE_RUN=TRUE
> xmlchange RESUMIT=10
> ./EXAMPLE_CASEp.submit

58

Chapter 6. Use Cases and FAQs

BASICS: What calendars are supported in CESM?
CESM supports a 365 day (or no-leap) calendar as well as a gregorial calendar. The
calendar is set by the xml variable, CALENDAR, in env_build.xml1. The no-leap cal-
endar has the standard 12 months, but it has 365 days every year and 28 days in ev-
ery February. Monthly averages in CESM are truly computed over varying number
of days depending on the month of the year. In CESM1.0.x, a gregorian calendar was
only possible if the ESMF library was used. This is no longer the case in CESM1.1.x
and CESM1.2.x.

BASICS: How do I change processor counts and component
layouts on processors?

This example modifies the PE layout for our original run, EXAMPLE_CASE. We now
target the model to run on the yellowstone supercomputer and modify our PE layout
to use a common load balanced configuration for CESM on large IBM machines. Also
see the Section called Changing the PE layout in Chapter 2.

In our original example, EXAMPLE_CASE, we used 128 pes with each component
running sequentially over the entire set of processors.

128-pes/128-tasks layout

Now we change the layout to use 1728 processors and run the ice, lnd, and cpl models
concurrently on the same processors as the atm model while the ocean model will run
on its own set of processors. The atm model will be run on 1664 pes using 832 MPI
tasks each threaded 2 ways and starting on global MPI task 0. The ice model is run
using 320 MPI tasks starting on global MPI task 0, but not threaded. The lnd model
is run on 384 processors using 192 MPI tasks each threaded 2 ways starting at global
MPI task 320 and the coupler is run on 320 processors using 320 MPI tasks starting
at global MPI task 512. The ocn model uses 64 MPI tasks starting at global MPI task
832.

1728-pes/896-tasks layout

Since we will be modifying env_mach_pes.xml after cesm_setup was called, the fol-
lowing needs to be invoked:

> ./cesm_setup -clean
> xmlchange NTASKS_ATM=832
> xmlchange NTHRDS_ATM=2
> xmlchange ROOTPE_ATM=0
> xmlchange NTASKS_CPL=320
> xmlchange NTHRDS_CPL=1
> xmlchange ROOTPE_CPL=512
> xmlchange NTASKS_GLC=320

59

Chapter 6. Use Cases and FAQs

> xmlchange NTHRDS_GLC=1
> xmlchange ROOTPE_GLC=0
> xmlchange NTASKS_ICE=320
> xmlchange NTHRDS_ICE=1
> xmlchange ROOTPE_ICE=0
> xmlchange NTASKS_LND=192
> xmlchange NTHRDS_LND=2
> xmlchange ROOTPE_LND=320
> xmlchange NTASKS_OCN=64
> xmlchange NTHRDS_OCN=1
> xmlchange ROOTPE_OCN=832
> xmlchange NTASKS_ROF=192
> xmlchange NTHRDS_ROF=2
> xmlchange ROOTPE_ROF=320
> ./cesm_setup

It is interesting to compare the timings from the 128- and 1728-processor runs. The
timing output below shows that the original model run on 128 pes cost 851 pe-
hours/simulated_year. Running on 1728 pes, the model cost more than 5 times as
much, but it runs more than two and a half times faster.

128-processor case:
Overall Metrics:
Model Cost: 851.05 pe-hrs/simulated_year (scale= 1.00)
Model Throughput: 3.61 simulated_years/day

1728-processor case:
Overall Metrics:
Model Cost: 4439.16 pe-hrs/simulated_year (scale= 1.00)
Model Throughput: 9.34 simulated_years/day

See understanding load balancing CESM for detailed information on understanding
timing files.

BASICS: What are CESM xml variables and CESM environment
variables?

Like in CESM1.0 and CESM1.1, CESM1.2 cases are customized, built and run largely
through setting what CESM calls "environment variables". These actually appear to
the user as variables defined in xml files. Those files appear in the case directory once
a case is created and are named something like env_*.xml. They are converted to ac-
tual environment variables via a csh script called ccsm_getenv. That script calls a perl
script called xml2env that converts the xml files to shell files that are then sourced and
removed. The ccsm_getenv and xml2env exist in the $CASEROOT/Tools directory.
The environment variables are specified in xml files to support extra automated er-
ror checking and automatic generation of env variable documentation. If you want
to have the cesm environment variables in your local shell environment, do the fol-
lowing

> cd $CASEROOT
> source ./Tools/ccsm_getenv

You must run the ccsm_getenv from the CASEROOT directory exactly as
shown above. There are multiple env_*.xml files including env_case.xml,
env_mach_pes.xml, env_build.xml, and env_run.xml. To a large degree, the
different env files exist so variables can be locked in different phases of the case
setup, build, and run process. For more info on locking files, see the Section called
BASICS: Why is there file locking and how does it work?. The important point is
that env_case.xml variables cannot be changed after create_newcase is invoked.
env_mach_pes cannot be changed after cesm_setup is invoked unless you plan
to invoke the commands cesm_setup -clean, and cesm_setup again. env_build

60

Chapter 6. Use Cases and FAQs

variables cannot be changed after the model is built unless you plan to clean and
rebuild. env_run.xml2 variables can be changed at any time. The CESM scripting
software checks that xml files are not changed when they shouldn’t be.

CESM recommends using the xmlchange tool to modify env variables. This will de-
crease the chance that typographical errors will creep into the xml files. Conversion of
the xml files to environment variables can fail silently with certain xml format errors.
To use xmlchange, do, for instance,

> cd $CASEROOT
> ./xmlchange STOP_OPTION=nmonths
> ./xmlchange STOP_N=6

which will change the variables STOP_OPTION and STOP_N in the file env_run.xml
to the specified values. The xml files can be edited manually, but users should take
care not to introduce any formatting errors that could lead to incomplete env settings.
If there appear to be problems with the env variables (i.e. if the model doesn’t seem
to have consistent values compared to what’s set in the xml files), then confirm that
the env variables are being set properly. There are a couple of ways to do that. First,
run the ccsm_getenv script as indicated above and review the output generated by
the command "env|sort". The env variables should match the xml settings. Another
option is to edit the $CASEROOT/Tools/ccsm_getenv script and comment out the
line "rm $i:r". That should leave the shell env files around, and they can then be re-
viewed. The latter approach should be undone as soon as possible to avoid problems
running ccsm_getenv later.

BASICS: How do I modify the value of CESM xml variables?
CESM recommends using the xmlchange tool to modify env variables. xmlchange
supports error checking as part of the implementation. Also, using xmlchange will
decrease the chance that typographical errors will creep into the xml files. Conversion
of the xml files to environment variables can fail silently with certain xml format
errors. To use xmlchange, do, for instance,

> cd $CASEROOT
> ./xmlchange STOP_OPTION=nmonths
> ./xmlchange STOP_N=6

which will change the variables STOP_OPTION and STOP_N in the file env_run.xml
to the specified values. The xml files can be edited manually, but users should take
care not to introduce any formatting errors that could lead to incomplete env settings.
See also .

BASICS: Why aren’t my $CASEROOT xml variable changes
working?

It’s possible that a formatting error has been introduced in the env xml files. This
would lead to problems in setting the env variables. If there appear to be problems
with the env variables (i.e. if the model doesn’t seem to have consistent values com-
pared to what’s set in the xml files), then confirm that the env variables are being set
properly. There are a couple of ways to do that. First, run the ccsm_getenv script via

> cd $CASEROOT
> source ./Tools/ccsm_getenv
> env

and review the output generated by the command "env". The env
variables should match the xml settings. Another option is to edit the
$CASEROOT/Tools/ccsm_getenv script and comment out the line "rm $i:r". That

61

Chapter 6. Use Cases and FAQs

should leave the shell env files around, and they can then be reviewed. The
latter approach should be undone as soon as possible to avoid problems running
ccsm_getenv later.

BASICS: How do I run multiple cases all using a single
executable?

In CESM, the directory containing the model executable is cleanly separated from
the directory where the model is run. As a result, it is now straightforward to run
multiple cases where the env_build.xml for each case is identical all using a pre-built ex-
ecutable. As an example, this type of flexibility greatly simplifies carrying out UQ
analysis.

The following outlines the steps involved to do this.

1. Create the executable that all runs will use. Call this case RefExe. The following
would be a sample create_newcase command:
> cd $CCSMROOT/scripts
> create_newcase -case RefExe -compset B1850CN -res ne30_g16 -mach hopper
> cd RefExe
> ./cesm_setup
> ./RefExe.build
Verify that the model has build successfully. For reference
below - the $EXEROOT for the RefExe case will be
/scratch/scratchdirs/$CCSMUSER/RefExe/bld.

2. All subsequent calls to create_newcase that will use the RefExe executable
must have identical arguments for -compset, -res and -mach. Lets say that you
want to run 2 separate cases, RefExe_Case1 and RefExe_Case2 that both use
the executable RefExe. You would then do the following:
> cd $CCSMROOT/scripts
> create_newcase -case RefExe_Case1 -compset B1850CN -res ne30_g16 -mach hopper
> cd RefExe_Case1
> ./cesm_setup
> xmlchange EXEROOT=/scratch/scratchdirs/$CCSMUSER/RefExe/bld.
> xmlchange BUILD_COMPLETE=TRUE
> qsub RefExe_Case1.run

> cd $CCSMROOT/scripts
> create_newcase -case RefExe_Case2 -compset B1850CN -res ne30_g16 -mach hopper
> cd RefExe_Case1
> ./cesm_setup
> xmlchange EXEROOT=/scratch/scratchdirs/$CCSMUSER/RefExe/bld.
> xmlchange BUILD_COMPLETE=TRUE
> qsub RefExe_Case2.run

Note that by setting BUILD_COMPLETE in env_build.xml to TRUE, the scripts as-
sume that the model has already been built for the case. Normally, the $CASE.build
script fills this in when the build is successful. However, since you will not invoke the
build for RefExe_Case1 and RefExe_Case2, you must then manually tell the script
where the build is - and that it has been successful. This option is FOR EXPERTS
ONLY and should only be used by those users that are completely familiar with the
CESM scripts.

62

Chapter 6. Use Cases and FAQs

BASICS: How do I use the ESMF library and ESMF interfaces?
CESM supports use of either the CESM designed component interfaces which are
based on MCT datatypes and are used by default in CESM or ESMF compliant com-
ponent interfaces. In both cases, the driver and component models remain funda-
mentally the same. The ESMF interface implementation exists in CESM to support
further development and testing of an ESMF driver or ESMF couplers and to allow
CESM model components to interact with other coupled systems using ESMF cou-
pling standards.

ESMF is NOT required or provided by CESM. It must be downloaded3 and installed
separately. It is safest to compile ESMF and CESM with identical compilers and mpi
versions. It may be possible to use versions that are different but compatible; how-
ever, it is hard to predict which versions will be compatible and using different ver-
sions can result in problems that are difficult to track down.

There are three possible modes of interaction between CESM and ESMF.

1. No linking to an external ESMF library. CESM uses a native implementation of
ESMF timekeeping interfaces (default).

To run with the MCT interfaces and the native time manager, set the following
env variables
- cd to your case directory
- edit env_build.xml
- set COMP_INTERFACE to "MCT"
- set USE_ESMF_LIB to "FALSE"

2. Linking with an ESMF library to use the ESMF time manager but continued
use of the native CESM component interfaces.

To run with the native interfaces and ESMF time manager, set the following
env variables
- cd to your case directory
- edit env_build.xml
- set COMP_INTERFACE to "MCT"
- set USE_ESMF_LIB to "TRUE"
- set ESMF_LIBDIR to a valid installation directory of ESMF version 5.3.0

3. Linking with an ESMF library in order to use ESMF component interfaces. In
this mode ESMF timekeeping is also activated.

To run with the ESMF interfaces and ESMF time manager, set the following
env variables
- cd to your case directory
- edit env_build.xml
- set COMP_INTERFACE to "ESMF"
- set USE_ESMF_LIB to "TRUE"
- set ESMF_LIBDIR to a valid installation directory of ESMF version 5.3.0

The ESMF library can be activated in two ways in CESM. The primary way is via the
ESMF_LIBDIR env variable in the env_build.xml file described above. The secondary
way is via a system environment variable called ESMFMKFILE. If this environment
variable is set either through a system or module command, then the ESMF library
will be picked up by the CESM scripts, but the local CESM variable, ESMF_LIBDIR,
will always have precedence.

To verify the correctness of the ESMF component interfaces in CESM, compute and
compare CESM global integrals with identical runs differing only in the use of the
MCT and ESMF interfaces. In both cases, the ESMF library should be active to guar-
antee identical time manager values. In both runs, the ’INFO_DBUG’ parameter in
env_run.xml should be set to 2 which activates the global integral diagnostics. A
valid comparison would be a 10 day test from the same initial conditions. The global

63

Chapter 6. Use Cases and FAQs

integrals produced in the cpl log file should be identical in both cases. This test can
be set up manually as described above or a CME test can be carried out which is
designed to test this exact capability.

BASICS: Why is there file locking and how does it work?
In CESM, there are several different $CASEROOT xml files. These include
env_case.xml, env_mach_pes.xml, env_build.xml, and env_run.xml. These files are
organized so that variables can be locked during different phases of the case setup,
build, and run. Locking variables is a feature of CESM that prevents users from
changing variables after they have been resolved (used) in other parts of the scripts
system. The variables in env_case are locked when create_newcase is called. The
env_mach_pes variables are locked when cesm_setup is called. The env_build
variables are locked when CESM is built, and the env_run variables are never locked
and can be changed anytime. In addition, the Macros file is locked as part of the
build step. The $CASEROOT/LockedFiles directory saves copies of the xml files to
facilitate the locking feature. In summary:

• env_case.xml is locked upon invoking create_newcase and cannot be
unlocked. To change settings in env_case, a new case has to be generated with
create_newcase.

• env_mach_pes.xml is locked after running cesm_setup. After changing variable
values in this file, you need to invoke cesm_setup -clean and then cesm_setup.

• Macros and env_build.xml are locked upon the successful completion of
$CASE.build. Both Macros and env_build.xml can be unlocked by invoking
$CASE.cleanbuild and then the model should be rebuilt.

BASICS: What are the directories and files in my case directory?
The following describes many of the files and directories in the $CASEROOT direc-
tory.

Buildconf/

is the directory where the buildnml and buildexe component scripts reside and
where the input_data_list files are generated by the buildnml scripts.

CaseDocs/

is the directory where copies of the latest namelist/text input files from invoking
preview_namelists are placed. These files should not be edited and exist only to
help document the case setup and run.

SourceMods/

contains directories for each component where case specific source code modifi-
cations can be included. The source files in these directories will always be used
in preference to the source code in $CCSMROOT. This feature allows users to
modify CESM source code on a case by case basis if that is preferable to making
modifications in the $CCSMROOT sandbox.

LockedFiles/

is the directory that holds copies of the locked files.

Macros

is the Makefile Macros file for the current configuration. The Makefile is located
in the Tools directory and is identical on all machines. The Macros file is a ma-
chine and compiler dependent file. This file is locked during the build step.

64

Chapter 6. Use Cases and FAQs

README.case

provides a summary of the commands used to generate this case.

$CASE.build

is the script that is run interactively to build the CESM model.

$CASE.clean_build

is the script that cleans the CESM build.

$CASE.l_archive

is the script that is submitted to the batch queue to archive CESM data to the
long-term archive storage system, like an hpss or mass storage system.

$CASE.run

is the script that is submitted to the batch queue to run a CESM job. This script
could also be run interactively if resources allow.

$CASE.submit

is the script that will submit the job to the system’s particular batch queuing
system.

check_input_data

is a tool that checks for missing input datasets and provides a capability for
exporting them to local disk.

cesm_setup

is the script that is run to generate the $CASE.run script for the target
env_mach_pes.xml file and if they have not already been created, the
user_nl_xxx files for the target components.

create_production_test

is a tool that generates an exact restart test in a separate directory based on the
current case.

env_*.xml files

contain variables used to set up, build, and run CESM.

logs/

is the directory that contains a copy of the component log files from successful
case runs.

timing/

is the directory that contains timing output from each successful case run.

xmlchange

is a utility that supports changing xml variables in the $CASEROOT xml files.

$CASEROOT/Tools/

a directory containing many scripts that are used to set up the CESM model as
well as run it. Some of particular note are

• Makefile is the Makefile that will be used for the build.
• cesm_buildexe is invoked by $CASEROOT/$CASE.build to generate the model

executable. This script calls the component buildexe scripts in Buildconf.

65

Chapter 6. Use Cases and FAQs

• cesm_buildnml is invoked by $CASEROOT/$CASE.build to generate the compo-
nent namelists in $RUNDIR. This script calls the component buildnml scripts in
Buildconf.

• ccsm_check_lockedfiles checks that any files in the $CASEROOT/LockedFiles/ di-
rectory match those in the $CASEROOT directory. This helps protect users from
overwriting variables that should not be changed.

• ccsm_getenv converts the xml variables in $CASEROOT to csh environmental vari-
ables.

• getTiming.csh generates the timing information.
• getTiming2.pl generates timing information and is used by getTiming.csh.
• mkDepends generates Makefile dependencies in a form suitable for inclusion into

a Makefile.
• st_archive.sh is the short-term archive script. It moves model output out of run

directory to the short-term archive directory. Associated with DOUT_S and
DOUT_S_ROOT env variables in env_run.xml.

• taskmaker.pl derives pe counts and task and thread geometry info based on env
var values set in the env_mach_pes file.

• xml2env converts env_*xml files to shell environment variable files that are then
sourced for inclusion in the model environment. Used by the ccsm_getenv script.

IO: What is pio?
The parallel IO (PIO) library is included with CESM and is automatically built as
part of the CESM build. CESM components use the PIO library to read and/or write
data. The PIO library is a set of interfaces that support serial netcdf, parallel netcdf,
or binary IO transparently. The implementation allows users to easily modify the pio
setup on the fly to change the method (serial netcdf, parallel netcdf, or binary data)
as well as various parameters associated with PIO to optimize IO performance.

CESM prefers that data be written in CF compliant netcdf format to a single file that is
independent of all parallel decomposition information. Historically, data was written
by gathering global arrays on a root processor and then writing the data from the
root processor to an external file using serial netcdf. The reverse process (read and
scatter) was done for reading data. This method is relatively robust but is not memory
scalable, performance scalable, or performance flexible.

PIO works as follows. The PIO library is initialized and information is provided
about the method (serial netcdf, parallel netcdf, or binary data), and the number of
desired IO processors and their layout. The IO parameters define the set of proces-
sors that are involved in the IO. This can be as few as one and as many as all available
processors. The data, data name and data decomposition are also provided to PIO.
Data is written through the PIO interface in the model specific decomposition. In-
side PIO, the data is rearranged into a block decomposition on the IO processors and
the data is then written serially using netcdf or in parallel using pnetcdf. There are
several namelist options to control PIO functionality. Refer to the Parallel I/O (PIO)
control variables4 in the env_run namelist documentation for details.

There are several benefits associated with using PIO. First, even with serial netcdf,
the memory use can be significantly decreased because the global arrays are decom-
posed across the IO processors and written in chunks serially. This is critical as CESM
runs at higher resolutions where global arrays need to be minimized due to memory
availability. Second, pnetcdf can be turned on transparently potentially improving
the IO performance. Third, PIO parameters such as the number of IO tasks and their
layout can be tuned to reduce memory and optimize performance on a machine by
machine basis. Fourth, the standard global gather and write or read and global scatter
can be recovered by setting the number of io tasks to 1 and using serial netcdf.

CESM uses the serial netcdf implementation of PIO and pnetcdf is turned off in PIO
by default. Several components provide namelist inputs that allow use of pnetcdf
in PIO. To use pnetcdf, a pnetcdf library (like netcdf) must be available on the local

66

Chapter 6. Use Cases and FAQs

machine and PIO pnetcdf support must be turned on when PIO is built. This is done
as follows

1. Locate the local copy of pnetcdf. We recommend version 1.3.1 (1.2.0 or newer is
required)

2. Set PNETCDF_PATH in the Macros file to the directory of the pnetcdf install (ie.
/contrib/pnetcdf1.3.1/).

3. Run the clean_build script if the model has already been built.

4. Run the build script to rebuilt pio and the full CESM system.

5. Change component IO namelist settings to pnetcdf and set appropriate IO tasks
and layout.

There is an ongoing effort between CESM, pio developers, pnetcdf developers and
hardware vendors to understand and improve the IO performance in the various
library layers. To learn more about pio, see the pio documentation.5

IO: How do I use pnetcdf?
See the Section called IO: What is pio?

CAM: How do I customize CAM output fields?
In this example, we further modify our EXAMPLE_CASEp code to set various CAM
output fields. The variables that we set are listed below. See CAM Namelist Variables6

for a complete list of CAM namelist variables.

avgflag_pertape

Sets the averaging flag for all variables on a particular history file series. Default
is to use default averaging flags for each variable. Average (A), Instantaneous
(I), Maximum (X), and Minimum (M).

nhtfrq

Array of write frequencies for each history files series.

When NHTFRQ(1) = 0, the file will be a monthly average. Only the first file series
may be a monthly average.

When NHTFRQ(i) > 0, frequency is input as number of timesteps.

When NHTFRQ(i) < 0, frequency is input as number of hours.

mfilt

Array of number of time samples to write to each history file series (a time sam-
ple is the history output from a given timestep).

ndens

Array specifying output format for each history file series. Valid values are 1 or
2. ’1’ implies output real values are 8-byte and ’2’ implies output real values are
4-byte. Default: 2,2,2,2,2,2

fincl1 = ’field1’, ’field2’, ...

List of fields to add to the primary history file.

67

Chapter 6. Use Cases and FAQs

fincl[2..6] = ’field1’, ’field2’, ...

List of fields to add to the auxiliary history file.

fexcl1 = ’field1’, ’field2’, ...

List of field names to exclude from the default primary history file (default fields
on the Master Field List).

fexcl[2..6] = ’field1’, ’field2’,...

List of the field names to exclude from the auxiliary history files.

Edit user_nl_cam and add the following lines at the end of the file:

avgflag_pertape = ’A’,’I’
nhtfrq = 0 ,-6
mfilt = 1 , 30
ndens = 2 , 2
fincl1 = ’FSN200’,’FSN200C’,’FLN200’,

’FLN200C’,’QFLX’,’PRECTMX:X’,’TREFMXAV:X’,’TREFMNAV:M’,
’TSMN:M’,’TSMX:X’

fincl2 = ’T’,’Z3’,’U’,’V’,’PSL’,’PS’,’TS’,’PHIS’

avgflag_pertape specifies how the output data will be averaged. In the first output
file, b40.2000p.cam2.h0.yyyy-mm.nc, data will be averaged monthly. In the second
output file, b40.2000p.cam2.h1.yyyy-mm-dd.nc, data will be instantaneous.

nhtfrq sets the frequency of data writes, so b40.2000p.cam2.h0.yyyy-mm.nc will be
written as a monthly average, while b40.2000p.cam2.h1.yyyy-mm-dd.nc will con-
tain time slices that are written every 6 hours.

mfilt sets the model to write one time sample in b40.2000p.cam2.h0.yyyy-mm.nc
and 30 time samples in b40.2000p.cam2.h1.yyyy-mm-dd.nc.

ndens sets both files to have 32-bit netCDF format output files.

fincl1 sets the output fields for b40.2000p.cam2.h0.yyyy-mm.nc. A complete list of
the CAM output fields appears here. In this example, we’ve asked for more variables
than will fit on a Fortran line. As you can see, it is all right to split variable lists across
lines. Also in this example, we’ve asked for maximum values of TREFMXAV and
TSM, and minimum values of TREFMNAV and TSMN.

fincl2 sets the output fields for b40.2000p.cam2.h1.yyyy-mm-dd.nc, much the same as
fincl1 sets output fields for b40.2000p.cam2.h0.yyyy-mm.nc, only in this case, we are
asking for instantaneous values rather than averaged values, and choosing different
output fields.

CAM: How do I customize CAM forcings?
To set the greenhouse gas forcings, you must first understand the namelist vari-
ables associated with them. See CAM Namelist Variables7 for a complete list of CAM
namelist variables.

scenario_ghg

Controls treatment of prescribed co2, ch4, n2o, cfc11, cfc12 volume mixing ratios.
May be set to ’FIXED’ or ’RAMPED’ or ’RAMP_CO2_ONLY’.

FIXED => volume mixing ratios are fixed and have either default or namelist
input values.

RAMPED => volume mixing ratios are time interpolated from the dataset spec-
ified by bndtvghg.

68

Chapter 6. Use Cases and FAQs

RAMP_CO2_ONLY => only co2 mixing ratios are ramped at a rate
determined by the variables ramp_co2_annual_rate, ramp_co2_cap, and
ramp_co2_start_ymd.

Default: FIXED

bndtvghg

Full pathname of time-variant boundary dataset for greenhouse gas surface val-
ues.

rampyear_ghg

If scenario_ghg is set to "RAMPED" then the greenhouse gas surface values are
interpolated between the annual average values read from the file specified by
bndtvghg. In that case, the value of this variable (> 0) fixes the year of the lower
bounding value (i.e., the value for calendar day 1.0) used in the interpolation.
For example, if rampyear_ghg = 1950, then the GHG surface values will be the
result of interpolating between the values for 1950 and 1951 from the dataset.
Default: 0

Edit user_nl_cam and add the following lines at the end of the file. The following
assumes that "my_inputdata_path" is identical to $DIN_LOC_ROOT.

scenario_ghg = ’RAMPED’
bndtvghg = ’my_inputdata_path/atm/cam/ggas/ghg_hist_1765-2005_c091218.nc’
rampyear_ghg = 2000

CAM/CLM: How do I change history file output frequency and
content for CAM and CLM during a run?

If you want to change the frequency of output for CAM or CLM (i.e. generate output
every 6 model hours instead of once a model day) in the middle of a run, or if you
want to change the fields that are output, in the middle of a run, you need to stop
the run, rebuild and rerun it with the same casename and branch from the same
casename. See the steps below for doing a branch run while retaining the casename.

Rebuilding the case and restarting it where you left off, are necessary because CAM
and CLM only read namelist variables once, at the beginning of a run. This is not the
case for POP and CICE, they read the namelist input on every restart, and therefore
for POP and CICE, you can change output fields and frequency by modifying the
appropriate namelist variables and then doing a restart.

The following example shows case B40.20th.1deg which runs from 1850 to 2005, and
will generate high frequency output for years 1950 through 2005. CAM will output
data every six hours instead of once a day. Also starting at year 1950 additional fields
will be output by the model.

1. The first step is to create case b40.20th.1deg and run the case for years 1850
through 1949 with your initial settings for output.

2. Next move your entire case directory, $CASEDIR, somewhere else, because
you need to rebuild and rerun the case using the same name.
> cd $CASEDIR
> mv b40.20th.1deg b40.20th.1deg.1850-1949

3. Now move your run directory, $RUNDIR, somewhere else as well.
> cd $RUNDIR
> mv b40.20th.1deg b40.20th.1deg.1850-1949

4. Next create a new case in your case directory with the same name,
b40.20th.1deg.

69

Chapter 6. Use Cases and FAQs

> cd $CASEDIR/scripts
> create_newcase -mach yellowstone -compset B_1850-2000_CN -res f09_g16 -case b40.20th.1deg
cd $RUNDIR

5. Next invoke the following commands
> cd $CASEROOT
> xmlchange RUN_TYPE=’branch’
> xmlchange RUN_REFCASE=’b40.20th.1deg’
> xmlchange RUN_REFDATE=’1948-01-01’
> xmlchange CAM_NML_USE_CASE=’1850-2005_cam4’
> xmlchange BRNCH_RETAIN_CASENAME=’TRUE’
> xmlchange GET_REFCASE=’FALSE’

6. Next set up the case and edit the coupler and CAM and CLM namelists.

a. Set up the case.
> ./cesm_setup

b. Edit user_nl_cpl. Add the following to the end of the file.
brnch_retain_casename = .true.

c. Edit user_nl_cam. Check that bndtvghg = ’$DIN_LOC_ROOT’ and add
the following to the end of the file

doisccp = .true.
isccpdata = ’/fis/cgd/cseg/csm/inputdata/atm/cam/rad/isccp.tautab_invtau.nc’
mfilt = 1,365,30,120,240
nhtfrq = 0,-24,-24,-6,-3
fincl2 = ’TREFHTMN’,’TREFHTMX’,’TREFHT’,’PRECC’,’PRECL’,’PSL’
fincl3 = ’CLDICE’,’CLDLIQ’,’CLDTOT’,’CLOUD’,’CMFMC’,’CMFMCDZM’,’FISCCP1’,

’FLDS’,’FLDSC’,’FLNS’,’FLUT’,’FLUTC’,’FSDS’,’FSDSC’,’FSNS’,
’FSNSC’,’FSNTOA’,’FSNTOAC’,’LHFLX’,’OMEGA’,’OMEGA500’,
’PRECSC’,’PRECSL’,’PS’,’Q’,’QREFHT’,’RELHUM’,’RHREFHT’,’SHFLX’,
’SOLIN’,’T’,’TGCLDIWP’,’TGCLDLWP’,’U’,’V’,’Z3’

fincl4 = ’PS:I’,’PSL:I’,’Q:I’,’T:I’,’U:I’,’V:I’,’Z3:I’
fincl5 = ’CLDTOT’,’FLDS’,’FLDSC’,’FLNS’,’FLNSC’,’FSDS’,’FSDSC’,’FSNS’,

’LHFLX’,’PRECC’,’PRECL’,’PRECSC’,’PRECSL’,’SHFLX’,
’PS:I’,’QREFHT:I’,’TREFHT:I’,’TS:I’
/

d. Edit user_nl_clm. This adds four auxilary history files in addition to the
standard monthly files. The first two are daily, and the last two are six
and three hourly.

hist_mfilt = 1,365,30,120,240
hist_nhtfrq = 0,-24,-24,-6,-3
hist_fincl2 = ’TSOI’, ’TG’, ’TV’, ’FIRE’, ’FSR’, ’FSH’, ’EFLX_LH_TOT’, ’WT’
hist_fincl3 = ’FSA’
hist_fincl4 = ’TSOI’, ’TG’, ’TV’, ’FIRE’, ’FSR’, ’FSH’, ’EFLX_LH_TOT’, ’WT’
hist_fincl5 = ’TSOI’, ’TG’, ’TV’, ’FIRE’, ’FSR’, ’FSH’, ’EFLX_LH_TOT’, ’WT’

7. Now build and run the case.
> b40.20th.1deg.build
> bsub < b40.20th.1deg.run

70

Chapter 6. Use Cases and FAQs

CAM: How do I use B compset history output to create SST/ICE
data files to drive an F compset?

The following was contributed by Art Mirin and outlines the procedure you would
use if you want to run an F-configuration case forced by monthly averages of SST
and ice coverage from a B-configuration case. As an example, the following uses
an f09_g16 CESM B-configuration simulation using CAM5 physics and with cosp
enabled. The procedure to create the SST/ICE file is as follows:

1. Save monthly averaged ’aice’ information from cice code (this is the default).

2. Save monthly averaged SST information from pop2. To do this, copy $CCSM-
ROOT/models/ocn/pop2/input_templates/gx1v6_tavg_contents, to $CASE-
ROOT/SourceMods/src.pop2 and change the 2 in front of SST to 1 for monthly
frequency.

3. Extract (using ncrcat) SST from monthly pop2 history files and form a single
netcdf file containing just SST; change SST to SST_cpl.
> ncrcat -v SST case.pop.h.*.nc temp.nc
> ncrename -v SST,SST_cpl temp.nc sst_cpl.nc

4. Extract aice from monthly cice history files and form a single netcdf file con-
taining aice; change aice to ice_cov; divide values by 100 (to convert from per-
cent to fraction).
> ncrcat -v aice case.cice.h.*.nc temp.nc
> ncrename -v aice,ice_cov temp.nc temp2.nc
> ncap2 -s ’ice_cov=ice_cov/100.’ temp2.nc ice_cov.nc

5. Modify fill values in the sst_cpl file (which are over land points) to have value
-1.8 and remove fill and missing value designators; change coordinate lengths
and names: to accomplish this, first run ncdump, then replace _ with -1.8 in
SST_cpl, then remove lines with _FillValue and missing_value. (Note: although
it might be possible to merely change the fill value to -1.8, this is conforming
to other SST/ICE files, which have SST_cpl explicitly set to -1.8 over land.) To
change coordinate lengths and names, replace nlon by lon, nlat by lat, TLONG
by lon, TLAT by lat. The last step is to run ncgen. Note: when using ncdump
followed by ncgen, precision will be lost; however, one can specify -d 9,17 to
maximize precision - as in the following example:
> ncdump -d 9,17 old.nc > old
> ncgen -o new.nc new

6. Modify fill values in the ice_cov file (which are over land points) to have value
1 and remove fill and missing value designators; change coordinate lengths
and names; patch longitude and latitude to replace missing values: to accom-
plish this, first run ncdump, then replace _ with 1 in ice_cov, then remove lines
with _FillValue and missing_value. To change coordinate lengths and names,
replace ni by lon, nj by lat, TLON by lon, TLAT by lat. To patch longitude and
latitude arrays, replace values of those arrays with those in sst_cpl file. The last
step is to run ncgen. (Note: the replacement of longitude and latitude missing
values by actual values should not be necessary but is safer.)

7. Combine (using ncks) the two netcdf files.
> ncks -v ice_cov ice_cov.nc sst_cpl.nc
Rename the file to ssticetemp.nc. The time variable will refer to the number
of days at the end of each month, counting from year 0, whereas the actual
simulation began at year 1 (CESM default); however, we want time values to
be in the middle of each month, referenced to the first year of the simulation
(first time value equals 15.5); extract (using ncks) time variable from existing
amip sst file (for correct number of months - 132 in this example) into working
netcdf file.
> ncks -d time,0,131 -v time amipsst.nc ssticetemp.nc

71

Chapter 6. Use Cases and FAQs

Add date variable: ncdump date variable from existing amip sst file; modify
first year to be year 0 instead of 1949 (do not including leading zeroes or it will
interpret as octal) and use correct number of months; ncgen to new netcdf file;
extract date (using ncks) and place in working netcdf file.
> ncks -v date datefile.nc ssticetemp.nc
Add datesec variable: extract (using ncks) datesec (correct number of months)
from existing amip sst file and place in working netcdf file.
> ncks -d time,0,131 -v datesec amipsst.nc ssticetemp.nc

8. At this point, you have an SST/ICE file in the correct format. However,
due to CAM’s linear interpolation between mid-month values, you need
to apply a procedure to assure that the computed monthly means are
consistent with the input data. To do this, you can invoke the bcgen code in
models/atm/cam/tools/icesst and following the following steps:

a. Rename SST_cpl to SST, and ice_cov to ICEFRAC in the current SST/ICE
file:
> ncrename -v SST_cpl,SST -v ice_cov,ICEFRAC ssticetemp.nc

b. In driver.f90, sufficiently expand the lengths of variables prev_history
and history (16384 should be sufficient); also comment out the test that
the climate year be between 1982 and 2001 (lines 152-158).

c. In bcgen.f90 and setup_outfile.f90, change the dimensions of xlon and
???TODO xlat to (nlon,nlat); this is to accommodate use of non-cartesian
ocean grid.

d. In setup_outfile.f90, modify the 4th and 5th ???TODO arguments in the
calls to wrap_nf_def_var for lon and lat to be 2 and dimids; this is to
accommodate use of non-cartesian ocean grid.

e. Adjust Makefile to have proper path for LIB_NETCDF and
INC_NETCDF.

f. Modify namelist accordingly.

g. Make bcgen and execute per instructions. The resulting sstice_ts.nc file
is the desired ICE/SST file.

9. Place new SST/ICE file in desired location. In the $CASEROOT for the F
compset you create, modify env_run.xml to have :

a. SSTICE_DATA_FILENAME point to the complete path of your SST/ICE
file.

b. SSTICE_GRID_FILENAME correspond to full path of (in this case)
gx1v6 grid file.

c. SSTICE_YEAR_START set to 0, and SSTICE_YEAR_END to one less
than the total number of years; set SSTICE_YEAR_ALIGN to 1 (since
CESM starts counting at year 1).

POP/CICE: How are CICE and POP decompositions set and how
do I override them?

The pop and cice models both have similar decompositions and strategies for speci-
fying the decomposition. Both models support decomposition of the horizontal grid
into two-dimensional blocks, and these blocks are then allocated to individual pro-
cessors inside each component. The decomposition must be specified when the mod-
els are built. There are four environment variables in env_build.xml for each model
that specify the decomposition used. These variables are POP or CICE followed by
_BLCKX, _BLCKY, _MXBLCKS, and _DECOMP. BLCKX and BLCKY specify the size
of the local block in grid cells in the "x" and "y" direction. MXBLCKS specifies the

72

Chapter 6. Use Cases and FAQs

maximum number of blocks that might be on any given processor, and DECOMP
specifies the strategy for laying out the blocks on processors.

The values for these environment variables are set automatically by the
scripts in the $CASEROOT/Buildconf directory whenever the model
is built or run is run. The scripts that generate the decompositions
are CASEROOT/Buildconf/generate_pop_decomp.pl and $CASE-
ROOT/Buildconf/generate_cice_decomp.pl. Those tools leverage decompositions
stored in xml files, $CCSMROOT/models/ocn/pop2/bld/pop_decomp.xml
and $CCSMROOT/models/ice/cice/bld/cice_decomp.xml, respectively. These
utilities set the decomposition for a given resolution and total processor count. The
decomposition used can have a significant effect on the model performance, and the
decompositions specified by the tools above generally provide optimum or near
optimum values for the given resolution and processor count. More information
about cice and pop decompositions can be found in each of those user guides.

The decompositions can be specified manually by setting the environment variable
POP_AUTO_DECOMP or CICE_AUTO_DECOMP to false in env_build.xml (which
turns off use of the scripts above) and then setting the four BLCKX, BLCKY,
MXBLCKS, and DECOMP environment variables in env_build.xml.

In general, relatively square and evenly divided Cartesian decompositions work well
for pop at low to moderate resolution. Cice performs best with "tall and narrow"
blocks because of the load imbalance for most global grids between the low and high
latitudes. At high resolutions, more than one block per processor can result in land
block elimination and non-Cartesian decompositions sometimes perform better. Test-
ing of several decompositions is always recommended for performance and valida-
tion before a long run is started.

POP: How do I initialize POP2 with a spun-up initial condition?
The startup/spunup initialization option is a specialized active-ocean model subop-
tion available in the CESM1.1 POP2 model which can be used only in conjunction
with a CESM "startup" case; it is not designed to work with "hybrid" or "branch"
cases.

The recommended method for initializing the CESM active ocean model (POP2) in a
CESM startup case is to use the default settings; these initialize the ocean model from
Levitus initial conditions and a state of rest. Occasionally, however, researchers are
interested in a startup run in which only the ocean model is initialized from a "spun
up" ocean condition generated from a previous CESM run. To accommodate their
request, a nonstandard method of initializing POP2 in a startup case was developed.
It is called the startup_spunup option. It is a research option that is designed for use
by expert users only.

Because of the complex interactions between the ocean-model parameterizations
used to generate the spun-up case and those used in the new startup case, it is
impossible to provide a single recommended spun-up ocean initial condition for all
circumstances. Instead, researchers must carefully select an existing solution whose
case conditions closely match those in the new case. A mismatch of options between
the spun-up case and the new case can result in scientifically invalid solutions.

When a startup_spunup case is necessary, use this procedure:

1. Currently, the default RUN_TYPE XML variable is set to "hybrid". User’s will
need to change the RUN_TYPE to "startup" after running create_newcase us-
ing the xmlchange command as follows:
> create_newcase -case ~/cesm/EXAMPLE_CASEocn \

-mach yellowstone \
-compset B20TR \
-res 0.9x1.25_gx1v6

73

Chapter 6. Use Cases and FAQs

> cd ~/cesm/EXAMPLE_CASEocn
> xmlchange -file env_run.xml -id RUN_TYPE -val startup
> ./cesm_setup

2. The ocean restart filename is of the form ${CASE_SP}.pop.r.$date, where $date
is the model date of your spun-up dataset. If the ocean restart files were written
in binary format, a companion ascii-formatted restart "header" file will also
exist. The companion header file will have the same name as the restart file,
except that it will have the suffix ".hdr" appended at the end of the filename.
You must copy both the binary restart file and the header file to your data
directory.

3. The spun-up ocean restart and restart header files must be available to your
new case. Copy them directly into $RUNDIR. It is critically important to copy
both the binary restart file and its companion header file to the $RUNDIR.
> cp ${CASE_SP}.pop.r.$date $RUNDIR
> cp ${CASE_SP}.pop.r.${date}.hdr $RUNDIR

4. Redefine the ocean-model initial-condition dataset by editing user_nl_pop2
and add the following lines at the end of the file (enter the resolved string for
${CASE_SP}).
set init_ts_suboption = ’spunup’
init_ts_file = ’${CASE_SP}.pop.r.$date
Note that the model will automatically look for the
${CASE_SP}.pop.r.${date}.hdr file in $RUNDIR.

5. Build and run as usual.

DRIVER: Is there more information about the coupler/driver
implementation?

Additional implementation details are provided in the the CESM coupler user guide8

about sequencing, parallel IO, performance, grids, threading, budgets, and other
items.

DRIVER: How do I pass in new fields between components?
In CESM, coupler code has been improved in order to remove the need to change any
coupler code when adding the exchange of new fields between model components.
To accomplish this, a new standardized naming convention has been introduced for
field names that are exchanged between model components. This is summarized be-
low.

==
New standardized naming convention

==

definitions:

state-prefix
first 3 characters: Sx_, Sa_, Si_, Sl_, So_
one letter indices: x,a,l,i,o,s,g,r
x => coupler (mapping, merging, atm/ocn flux calc done on coupler procs)
a => atm
l => lnd
i => ice
o => ocn
g => glc
s => snow (from clm to glc)
r => rof

74

Chapter 6. Use Cases and FAQs

state-name
what follows state prefix

flux-prefix
first 5 characters: Flmn__
lm => between components l and m
n => computed by component n
example: Fioi => ice/ocn flux computed by ice
example: Fall => atm/lnd flux computed by lnd
If flux prefix has first letter of P (so first five characters are PFlmn_)
then flux is passed straight through without scaling by the corresponding fraction)

flux-name
what follows flux-prefix

rules:

1) states:

a) atm attributes fields that HAVE a state-prefix of Sx_ in seq_flds_x2a_states
rule: will merge all identical values of the state-names from

seq_flds_i2x_states
seq_flds_l2x_states
seq_flds_o2x_states
seq_flds_xao_states

to obtain output state-name in seq_flds_x2a_states

rule: to merge input states that originate in the
lnd (l2x_a) will be scaled by the lndfrac
ice (i2x_a) will be scaled by the icefrac
cpl (xao_a) will be scaled by the ocnfrac
ocn (o2x_a) will be scaled by the ocnfrac

example:
seq_flds_l2x_states = "Sl_t"
seq_flds_i2x_states = "Si_t"
seq_flds_o2x_states = "So_t"
seq_flds_x2a_states = "Sx_t"
attribute fields Sl_t, Si_t, So_t, in
attribute vectors l2x_a, i2x_a, o2x_a will be
merged to obtain attribute Sx_t in attribute vector x2a_a

b) atm attribute fields that DO NOT HAVE a state-prefix of Sx_ in seq_flds_x2a_states
rule: copy directly all variables that identical state-prefix

AND state-name in
seq_flds_i2x_states and seq_flds_x2a_states
seq_flds_l2x_states and seq_flds_x2a_states
seq_flds_o2x_states and seq_flds_x2a_states
seq_flds_xao_states and seq_flds_x2a_states

example
seq_flds_i2x_states = ":Si_snowh"
seq_flds_x2a_states = ":Si_snowh"
attribute field of Si_snowh in i2x_a will be copied to
attribute field Si_snowh in x2a_a

2) fluxes:
rule: will merge all identical values of the flux-names from

seq_flds_i2x_states
seq_flds_l2x_states
seq_flds_o2x_states
seq_flds_xao_states

to obtain output state-name in seq_flds_x2a_states

rule: input flux fields that originate in the

75

Chapter 6. Use Cases and FAQs

lnd (l2x_a) will be scaled by the lndfrac
ice (i2x_a) will be scaled by the icefrac

- ignore all fluxes that are ice/ocn fluxes (e.g. Fioi_)
cpl (xao_a) will be scaled by the ocnfrac
ocn (o2x_a) will be scaled by the ocnfrac+icefrac

==

New user specified fields

==
New fields that are user specidied can be added as namelist variables
by the user in the cpl namelist seq_flds_user using the namelist variable
array cplflds_customs. The user specified new fields must follow the
above naming convention.
As an example, say you want to add a new state ’foo’ that is passed
from the land to the atm - you would do this as follows

apos;seq_flds_user
cplflds_custom = ’Sa_foo->a2x’, ’Sa_foo->x2a’

/
This would add the field ’Sa_foo’ to the character strings defining the
attribute vectors a2x and x2a. It is assumed that code would need to be
introduced in the atm and land components to deal with this new attribute
vector field.
Currently, the only way to add this is to edit $CASEROOT/user_nl_cpl

==

Coupler fields use cases

==
Previously, new fields that were needed to be passed between components
for certain compsets were specified by cpp-variables. This has been
modified to now be use cases. The use cases are specified in the
namelist cpl_flds_inparm and are currently triggered by the xml
variables CCSM_VOC, CCSM_BGC and GLC_NEC.

==

EXPERTS: How do I add a new user-defined component set?
Numerous component sets (i.e. compsets)9 are provided "out-of-the-box" with CESM
release. You can also call create_newcase giving it the -user_compset argument to
point to your own customized component set name.

In CESM1.2, the component set definition file,
$CCSMROOT/scripts/ccsm_utils/Case.template/config_compsets.xml has
been redefined to be hierarchical. The following documents the rules involved for
generating a compset from the hierarchy. The compononent set longname is given
by the following notation:

TIME_ATM[%phys]_LND[%phys]_ICE[%phys]_OCN[%phys]_ROF[%phys]_GLC[%phys]_WAV[%phys][_BGC%phys]

TIME = Time period (e.g. 2000, 20TR, RCP8...)
ATM = [CAM4, CAM5, DATM, SATM, XATM]
LND = [CLM40, CLM45, DLND, SLND, XLND]
ICE = [CICE, DICE, SICE, SICE]
OCN = [POP2, DOCN, SOCN, XOCN,AQUAP]
ROF = [RTM, DROF, SROF, XROF]
GLC = [CISM1, SGLC, XGLC]
WAV = [SWAV, XWAV]
BGC = optional BGC scenario

76

Chapter 6. Use Cases and FAQs

The optional %phys attributes specify submodes of the given system ALL the pos-
sible %phys choices for each component are listed with the -list command for cre-
ate_newcase and also summarized below.

===
Time period (first four characters)
===
1850 => pre-industrial
2000 => present day
20TR => transient 1850 to 2000
5505 => transient 1955 to 2005
9205 => transient 1992 to 2005
RCP8 => transient RCP8.5 future scenario
RCP6 => transient RCP6.0 future scenario
RCP4 => transient RCP4.5 future scenario
RCP2 => transient RCP2.6 future scenario
NUKE => Nuclear winter hypothetical scenario (based on RCP4.5)
1996 => present day with conditions for solar minimum in 1996
AMIP => transient for "stand-alone" CAM (1979 startdate)
GEOS => GEOS5 metereology for "stand-alone" CAM

===
CAM
===
CAM4% => cam4 physics
CAM5% => cam5 physics
CAM[45]%WCCM => CAM WACCM with daily solar data and SPEs:
CAM[45]%WCMX => CAM WACCM-X:
CAM[45]%WCSC => CAM WACCM specified chemistry:
CAM[45]%WCBC => CAM WACCM with the stratospheric black carbon CARMA model:
CAM[45]%WCSF => CAM WACCM with sulfur chemistry and the sulfate CARMA model:
CAM[45]%FCHM => CAM super_fast_llnl chemistry:
CAM[45]%TMOZ => CAM trop_mozart chemistry:
CAM[45]%MOZM => CAM trop_mozart_mam3 chemistry:
CAM[45]%MOZS => CAM trop_mozart_soa chemistry:
CAM[45]%SMA3 => CAM trop_strat_mam3 chemistry:
CAM[45]%SMA7 => CAM trop_strat_mam7 chemistry:
CAM[45]%SSOA => CAM trop_strat_soa chemistry:
CAM[45]%RCO2 => CAM CO2 ramp:

===
CLM
===
note: [^_]* means match zero or more of any character BUT an underbar.
(in other words make sure there is NOT a underbar before the string afterwards)

CLM40 => clm4.0 Physics
CLM40%[^_]*SP => clm4.0 Satellite phenology
CLM40%[^_]*CN => clm4.0 Carbon Nitrogen
CLM40%[^_]*CNDV => clm4.0 Carbon Nitrogen Dynamic Vegetation
CLM40%[^_]*CROP => clm4.0 Prognostic crop
CLM40%[^_]*SNCR => clm4.0 SNICAR radiative forcing calculation on

CLM45 => clm4.5 Physics
CLM45%[^_]*SP => clm4.5 Satellite phenology
CLM45%[^_]*CN => clm4.5 Carbon Nitrogen Biogeochemistry (BGC) (as in CLM4.0)
CLM45%[^_]*CNDV => clm4.5 Carbon Nitrogen BGC with Dynamic Vegetation
CLM45%[^_]*BGC => clm4.5 BGC (CN with vertically resolved soil BGC, based on Century with Methane)
CLM45%[^_]*CROP => clm4.5 Prognostic crop
CLM45%[^_]*VIC => clm4.5 VIC hydrology
CLM40%[^_]*SNCR => clm4.0 SNICAR radiative forcing calculation on
CLM45%[^_]*BGCDV => clm4.5 BGC (CN with vertically resolved soil BGC, based on Century with Methane) with dynamic veg

===
CICE
===

77

Chapter 6. Use Cases and FAQs

CICE => prognostic cice
CICE%PRES => prescribed cice

===
POP2
===
POP2 => POP2 default
POP2%ECO => POP2/Ecosystem
POP2%DAR => Darwin marine ecosystem (not supported in community releases)

===
RTM
===
RTM => default RTM model
RTM%FLOOD => RTM model with flood

===
CISM
===
CISM1 => cism1 (default, serial only)

===
DATM
===
DATM%QIA => QIAN atm input data (1948-1972)
DATM%CRU => CRUNCEP atm input data for (1901-2010)
DATM%S1850 => CPL history atm input data
DATM%1PT => single point tower site atm input data
DATM%NYF => COREv2 datm normal year forcing
DATM%IAF => COREv2 datm interannual year forcing

===
DLND
===
DLND%NULL => dlnd_mode is NULL , dlnd_sno_mode is NULL
DLND%SCPL => dlnd_mode is NULL , dlnd_sno_mode is CPLHIST (used for TG)
DLND%LCPL => dlnd_mode is CPLHIST, dlnd_sno_mode is NULL

===
DROF
===
DROF%NYF => COREv2 drof normal year forcing
DROF%IAF => COREv2 drof interannual year forcing
DROF%NULL => null mode

===
DICE
===
DICE%SSMI => dice mode is ssmi
DICE%SIAF => dice mode is ssmi_iaf
DICE%PRES => dice mode is prescribed
DICE%COPY => dice mode is copy
DICE%NULL => dice mode is null

===
DOCN
===
DOCN%NULL => docn null mode
DOCN%SOM => docn slab ocean mode
DOCN%DOM => docn data mode
DOCN%US20 => docn us20 mode
DOCN%COPY => docn copy mode

There are two ways to create a customized user-defined component set. If the com-
ponent set you want is not listed in the supported component sets10, and you have
no new optional %phys definitions for any of the components, then using the above

78

Chapter 6. Use Cases and FAQs

definitions you can create your own component set on the fly by using your own
longname definition to create_newcase. As an example, the following will create a
compset that is not currently supported out-of-the-box in CESM1.2.

> ./create_newcase -case mycompset \
-user_compset 1850_CAM5_CLM45%CN_CICE_POP2_RTM_SGLC_SWAV \
-res ne30_g16 \
-mach yellowstone

If you want to create a component set that has new physics definitions,
then the process is a bit more complicated. You will need to first edit
$CCSMROOT/scripts/ccsm_utils/Case.template/config_compset.xml and
fill in the appropriate sections specified by the string "USER_DEFINED section"
as necessary. At that point, you can then call ./create_newcase as above with the
-user_compset argument that is now customized to our requirements.

EXPERTS: How do I add a new user-defined grid?
Support for numerous out-of-the box model resolutions11 accompany the CESM re-
lease. (In addition to the link above, you can also view a listing of supported "out-
of-the-box" resolutions by running create_newcase -l.) In general, CESM grids are
associated with a specific combination of atmosphere, land, land-ice, river-runoff
and ocean/ice grids. The naming convention for these grids still only involves at-
mosphere, land, and ocean/ice grid specifications.

The most common resolutions have the atmosphere and land components on one
grid and the ocean and ice on a second grid. The naming convention looks like
f19_g16, where the f19 indicates that the atmosphere and land are on the 1.9x2.5 (fi-
nite volume dycore) grid while the g16 means the ocean and ice are on the gx1v6
one-degree displaced pole grid. While it is not supported, as of CESM1.1.1 does have
the ability to run with the atmosphere and land also separated. The naming conven-
tion for these trigrid cases looks like ne30_f19_g16, where the ne30 means that the
atmosphere is on the 30-element (spectral-element dycore) grid while the land is still
on the finite volume grid and the ocean / ice are still on the gx1v6 grid. This doc-
ument will outline how to set up the more complicated trigrid case, but will also
highlight what steps can be skipped if the atmosphere and land do not need to be
separated.

Note: This will be generalized in CESM1.2. TO DO

CESM provides completely new support for you to add your own specific
component grid combinations. To achieve this, CESM has a new top level directory
$CCSMROOT/mapping/. A brief list of the steps needed to add a new component grid
to the model system follows. Again, this process can be simplified if the atmosphere
and land are running on the same grid.

1. Start with SCRIP grid files for atmosphere, land, and ocean.

You must first create or obtain SCRIP format grid files for the atmosphere, land
and ocean grids. At present there is no supported functionality for creating the
SCRIP format file, although that is planned for CESM1.2. (check)

2. Build the check_map utility.

When you add new user-defined grid files, you will also need to generate a set
of mapping files so the coupler can send data from a component on one grid to
a component on another grid. There is an ESMF tool that tests the mapping file
by comparing a mapping of a smooth function to its true value on the destina-
tion grid. We have tweaked this utility to test a suite of of smooth functions, as

79

Chapter 6. Use Cases and FAQs

well as ensure conservation (when the map is conservative). Before generating
mapping functions it is highly recommended that you build this utility.

To build this tool, follow the instructions in
$CCSMROOT/mapping/check_maps/INSTALL. As with many of the steps in this
document, you will need to have the ESMF12 toolkit installed. It is installed by
default on most NCAR computers.

3. Generate atm<->ocn, atm<->lnd, lnd<->rtm, and ocn->lnd mapping files.

Using the SCRIP grid files from step one, you must generate a set
of conservative (area-averaged) and non-conservative (patch and
bilinear) mapping files. You can do this by calling gen_cesm_maps.sh
in $CCSMROOT/tools/mapping/gen_mapping_files/. This shell script
generates all the mapping files needed by CESM (except rtm->ocn, which
is discussed below). This script uses the ESMF offline weight generation
utility13, which you must build prior to running gen_cesm_maps.sh.

The README file in the gen_mapping_files/ directory contains details on
how to run gen_cesm_maps.sh . The basic usage is

$ cd $CCSMROOT/mapping/gen_mapping_files
$./gen_cesm_maps.sh \

--fileocn <input SCRIP ocn_grid full pathname> \
--fileatm <input SCRIP atm grid full pathname> \
--filelnd <input SCRIP lnd grid full pathname> \
--filertm <input SCRIP rtm grid full pathname> \
--nameocn <ocnname in output mapping file> \
--nameatm <atmname in output mapping file> \
--namelnd <lndname in output mapping file> \
--namertm <rtmname in output mapping file>

This command will generate the following mapping files:

map_atmname_TO_ocnname_aave.yymmdd.nc
map_atmname_TO_ocnname_blin.yymmdd.nc
map_atmname_TO_ocnname_patc.yymmdd.nc
map_ocnname_TO_atmname_aave.yymmdd.nc
map_ocnname_TO_atmname_blin.yymmdd.nc
map_atmname_TO_lndname_aave.yymmdd.nc
map_atmname_TO_lndname_blin.yymmdd.nc
map_lndname_TO_atmname_aave.yymmdd.nc
map_ocnname_TO_lndname_aave.yymmdd.nc
map_lndname_TO_rtmname_aave.yymmdd.nc
map_rtmname_TO_lndname_aave.yymmdd.nc

Notes:

a. You do not need to specify all four grids. For example, if you are run-
ning with the atmosphere and land on the same grid, then you do not
need to specify the land grid (and atm<->rtm maps will be generated).
If you also omit the runoff grid, then only the 5 atm<->ocn maps will be
generated.

b. ESMF_RegridWeightGen runs in parallel, and the gen_cesm_maps.sh
script has been written to run on yellowstone. To run on
any other machine, you may need to add some environment variables to
$CCSMROOT/mapping/gen_mapping_files/gen_ESMF_mapping_file/create_ESMF_map.sh
-- search for hostname to see where to edit the file.

Example (run on Nov 5, 2012):

$./gen_cesm_maps.sh \
-focn /CESM/cseg/mapping/grids/gx3v7_120309.nc -nocn g37 \
-fatm /CESM/cseg/mapping/grids/ne16np4_110512_pentagons.nc -natm ne16np4 \
-frtm /CESM/cseg/mapping/grids/r05_nomask_070925.nc -nrtm r05

Results in the following files

80

Chapter 6. Use Cases and FAQs

$ ls -1 map*
map_g37_TO_ne16np4_aave.121105.nc
map_g37_TO_ne16np4_blin.121105.nc
map_ne16np4_TO_g37_aave.121105.nc
map_ne16np4_TO_g37_blin.121105.nc
map_ne16np4_TO_g37_patc.121105.nc
map_ne16np4_TO_r05_aave.121105.nc
map_r05_TO_ne16np4_aave.121105.nc

4. Generate atmosphere, land and ocean / ice domain files.

Using the conservative ocean to land and ocean to atmosphere mapping
files created in the previous step, you can create domain files for the
atmosphere, land, and ocean; these are basically grid files with consistent
masks and fractions. You make these files by calling gen_domain in
$CCSMROOT/mapping/gen_domain_files.

The INSTALL file in the gen_domain_files/ directory contains details on
how to build the gen_domain executable. After you have built it, the README
in the same directory contains details on how to use the tool. The basic usage
is:

$./gen_domain -m ../gen_mapping_files/map_ocnname_TO_lndname_aave.yymmdd.nc \
-o ocnname -l lndname

$./gen_domain -m ../gen_mapping_files/map_ocnname_TO_atmname_aave.yymmdd.nc \
-o ocnname -l atmname

These commands will generate the following domain files:

domain.lnd.lndname_ocnname.yymmdd.nc
domain.ocn.lndname_ocnname.yymmdd.nc
domain.lnd.atmname_ocnname.yymmdd.nc
domain.ocn.atmname_ocnname.yymmdd.nc
domain.ocn.ocnname.yymmdd.nc

Notes:

a. If you are running with the atmosphere and land components on the
same grid, you only need to execute gen_domain once.

b. The input atmosphere grid is assumed to be unmasked (global). Land
cells whose fraction is zero will have land mask = 0.

c. If the ocean and land grids are identical then the mapping file will simply
be unity and the land fraction will be one minus the ocean fraction.

5. If you are adding a new ocn or rtm grid, create a new rtm->ocn mapping file.
(Otherwise you can skip this step.)

The process for mapping from the runoff grid to the ocean grid is currently un-
dergoing many changes. At this time, if you are running with a new ocean or
runoff grid, please contact Michael Levy (mlevy_AT_ucar_DOT_edu) for assis-
tance. If you are running with standard ocean and runoff grids, the mapping
file should already exist and you do not need to generate it.

6. If you are adding a new new lnd grid, create a new CLM surface dataset.
(Otherwise you can skip this step.)

a. Generate mapping files for CLM surface dataset (since this is a non-
standard grid).
$ cd $CCSMROOT/models/lnd/clm/tools/mkmapdata
$./mkmapdata.sh --gridfile <lnd SCRIP grid file> \

--res <atm resolution name> \
--gridtype global

b. Generate CLM surface dataset. Below is an example for a current day
surface dataset (model year 2000).

81

Chapter 6. Use Cases and FAQs

$ cd $CCSMROOT/models/lnd/clm/tools/mksurfdata_map
$./mksurfdata.pl -res usrspec -usr_gname <atm resolution name> \

-usr_gdate yymmdd -y 2000

7. Create grid file needed for create_newcase.

The next step is to create a file - call it mygrid.xml - with all the grid and
domain information. Assuming the domain files that were generated earlier
are in $DOMAIN_FILE_LOC, the contents of this file should be

<?xml version="1.0"?>
<config_horiz_grid>
<horiz_grid GLOB_GRID="atmgrid" nx="[size of atmgrid]" ny="[size of atmgrid]" />
<horiz_grid GLOB_GRID="lndgrid" nx="[size of lndgrid]" ny="[size of lndgrid]" />
<horiz_grid GLOB_GRID="ocngrid" nx="[size of ocngrid]" ny="[size of ocngrid]" />
<horiz_grid GRID="atmgrid_lndgrid_ocngrid" SHORTNAME="atm_lnd_ocn"

ATM_GRID="atmgrid" LND_GRID="lndgrid" OCN_GRID="ocngrid" ICE_GRID="ocngrid"
ATM_NCPL="48" OCN_NCPL="1"
ATM_DOMAIN_FILE="domain.lnd.atmgrid_ocngrid.$YYYYMMDD.nc"
LND_DOMAIN_FILE="domain.lnd.lndgrid_ocngrid.$YYYYMMDD.nc"
ICE_DOMAIN_FILE="domain.ocn.ocngrid.$YYYYMMDD.nc"
OCN_DOMAIN_FILE="domain.ocn.ocngrid.$YYYYMMDD.nc"
ATM_DOMAIN_PATH="$DOMAIN_FILE_LOC"
LND_DOMAIN_PATH="$DOMAIN_FILE_LOC"
ICE_DOMAIN_PATH="$DOMAIN_FILE_LOC"
OCN_DOMAIN_PATH="$DOMAIN_FILE_LOC"
DESC="Some new trigrid setup"

/>
</config_horiz_grid>

Where you only need the GLOB_GRID information for grids that are not already
included in the model. For unstructured grids, nx should be the number of
grid cells and ny should be 1; for structured grids, they should be the dimen-
sions of the grid.

8. Create user_nl_cpl contents for new mapping files.

One of the many input files generated for the coupler is
$RUNDIR/seq_maps.rc, which contains a list of mapping files. Using an
f09_g16 run on yellowstone as an example, the file will contain the following
(for brevity, some lines have been cut):

atm2ocnFmapname: ’/glade/proj3/cseg/inputdata/cpl/cpl6/map_fv0.9x1.25_to_gx1v6_aave_da_090309.nc’
atm2ocnSmapname: ’/glade/proj3/cseg/inputdata/cpl/cpl6/map_fv0.9x1.25_to_gx1v6_bilin_da_090309.nc’
atm2ocnVmapname: ’/glade/proj3/cseg/inputdata/cpl/cpl6/map_fv0.9x1.25_to_gx1v6_bilin_da_090309.nc’
lnd2atmFmapname: ’idmap’
lnd2atmSmapname: ’idmap’
lnd2rofFmapname: ’/glade/proj3/cseg/inputdata/lnd/clm2/mappingdata/maps/0.9x1.25/map_0.9x1.25_nomask_to_0.5x0.5_nomask_aave_da_c120522.nc’
lnd2rofFmaptype: ’X’
ocn2atmFmapname: ’/glade/proj3/cseg/inputdata/cpl/cpl6/map_gx1v6_to_fv0.9x1.25_aave_da_090309.nc’
ocn2atmSmapname: ’/glade/proj3/cseg/inputdata/cpl/cpl6/map_gx1v6_to_fv0.9x1.25_aave_da_090309.nc’

This file is created when you build the model namelists, and the default
values are based on the grids specified when you created the case. The model
only knows what default values to use for the out-of-the-box resolutions,
so you must specify what maps you have created by appending them to
$CASE/user_nl_cpl. If, for example, we’ve introduced a new atmosphere /

land grid with a shortname newatm and created all the necessary mapping
files in $MAPPING_FILE_LOC, then to create a newatm_g16 run we would need
to add the following to $CASE/user_nl_cpl:

atm2ocnFmapname=’$MAPPING_FILE_LOC/map_newatm_TO_gx1v6_aave.121105.nc’
atm2ocnSmapname=’$MAPPING_FILE_LOC/map_newatm_TO_gx1v6_blin.121105.nc’
atm2ocnVmapname=’$MAPPING_FILE_LOC/map_newatm_TO_gx1v6_patc.121105.nc’

82

Chapter 6. Use Cases and FAQs

ocn2atmFmapname=’$MAPPING_FILE_LOC/map_gx1v6_TO_newatm_aave.121105.nc’
ocn2atmSmapname=’$MAPPING_FILE_LOC/map_gx1v6_TO_newatm_aave.121105.nc’
lnd2rofFmapname=’$MAPPING_FILE_LOC/map_newatm_TO_r05_aave.121105.nc’
rof2lndFmapname=’$MAPPING_FILE_LOC/map_r05_TO_newatm_aave.121105.nc’

After running $CASE/preview_namelists these changes will be reflected in
$RUNDIR/seq_maps.rc.

9. Test new grid.

Below assume that the new grid is an atmosphere grid.

Test the new grid with all data components.
(write an example)
Test the new grid with CAM(newgrid), CLM(newgrid), DOCN(gx1v6), DICE(gx1v6)
(write an example)

EXPERTS: How do I carry out data assimilation using CAM and
DART?

Ensemble Kalman filter data assimilation (DA) can now be conducted within the
software framework of CESM. This form of DA uses the multi-instance capability of
CESM in which CESM advances an ensemble of model states of one or more CESM
components forward to the same forecast time, when observations are available.
Then the ensemble of forecast model states is passed to the Data Assimilation Re-
search Testbed (DART), where each state is adjusted toward the observations which
are available at that time. For details of this process see an introduction in BAMS
(2009)14 and/or the DART home page15. DART then passes the ensemble of adjusted
model states back to CESM to be used as initial conditions for the next forecast.

The references above describe the many uses of ensemble data assimilation, which
include:

• generation of analyses (blends of model forecast and observations which are a bet-
ter description of the physical system than either by itself),

• model development testing against actual observations (as opposed to other anal-
yses),

• sensitivity analysis between model variables of interest in a particular synoptic
situation,

• variability studies using the ensemble of equally valid model states, observation
system simulation experiments (OSSEs).

This use case outlines assimilation for a CAM (F comp set) build only. Assimilation
is possible with the ocean component (B comp sets), and experimental assimilations
with the land component (I comp sets) have been conducted. Additional use case de-
scriptions will be added to cover those and any future evolution of the CESM+DART
software. This use case assumes that the user is familiar with setting up and using
CESM, and is willing to learn how to set up and use DART in the CESM context.
There is no simple example which users can grab and run, because understanding
what is being run is crucial to success and there are many choices to be made.

The major steps of assimilating observations into CAM follow.

1. Download DART16. DART relieves researchers of the need to develop data as-
similation capabilities, but familiarity with data assimilation and the DART
facility is required in order to use it productively. This can be gained through
the DART tutorial17.

83

Chapter 6. Use Cases and FAQs

2. Build the DART executables 18 for a simple model to check that DART has been
installed correctly.

3. Build the DART executables for CAM, following a similar procedure to 2.

4. The script .../DART/models/cam/CESM_setup.csh builds a CAM which
combines the user’s desired features and DART’s required features. The
characteristics of the CAM and assimilation set in CESM_setup.csh are:

• locations of the build, run, and archive directories,

• features of the $CASE to be built,

• locations of input files, including the initial ensemble of CAM (and CLM and
CICE) states

• date and timing characteristics of the assimilation,

• machine and resource characteristics.
- Copy CESM_setup.csh to the directory where the user wants to build CAM.
- Edit that CESM_setup.csh to set most of the assimilation parameters.
- Run CESM_setup.csh.

5. Set the rest of the assimilation parameters:
- cd to $CASE
- Edit input.nml to set other characteristics of the assimilation.
For details see the online help pages19 or the html in the user’s $DART/filter/filter.html#GettingStarted.

- Edit assimilate.csh to set the location of the observations to be assimilated.
Sets of real observations are available for use, or synthetic observations20

can be created using the user’s model.

6. Submit the job using $CASE.submit in the $CASEROOT directory.

7. Output from the assimilation is handled by the CESM archiver(s), which has
been modified to handle DART output. Output appears in a new short-term
archive directory .../archive/.../dart/hist. The 3 files created at each assimila-
tion time are

• Prior_Diag.YYYY-MM-DD-SSSSS.nc: the ensemble mean, spread, members
(optionally), and ’inflation’ fields from before the assimilation (at the end of
the forecast).

• Posterior_Diag.YYYY-MM-DD-SSSSS.nc: same as Prior, but from after the
assimilation.

• obs_seq.YYYY-MM-DD-SSSSS.final: the actual observations assimilated and
the ensemble members estimates of those observations.

The obs_seq.final files are usually processed by the obs_diag21

program in DART (.../DART/diagnostics/threed_sphere/obs_diag.f90),
and the resulting NetCDF files are usually processed with Matlab scripts
included in DART (or similar). Little knowledge of Matlab is needed to use them.
The Prior and Posterior files can be examined with any NetCDF viewing tool.

EXPERTS: How do I add a new CESM model component?
The following provides a very general overview of what you need to do to add a new
atm, lnd, ocn, ice, glc or rof component to CESM.

1. You must support init, run, and final top level interfaces.

2. You must "send" the component grid and decomposition at initialization.

3. You must pack and unpack coupling fields to/from interface datatypes.

84

Chapter 6. Use Cases and FAQs

4. You must integrate forward a fixed amount of time and confirm that your
model is in sync with the driver clock.

5. You must provide/use "expected" scalar information as needed. - provide
present/prognostic flags at initialization - provide "nextsw_cday" if atm
component, use nextsw_cday if surface model - use mpicom - use stop and
restart information - use inst_name, inst_index, inst_suffix (for cesm[version])
- use other infodata information as needed (ie. starttype, case_name,
configuration settings like aqua_planet, orbital settings)

6. Use I/O unit manager in CESM

7. You must meet filename conventions for history, restart, and log files

There are some component to component variations in the interfaces and in the pro-
vide/use of scalar data, so it’s best to follow another component of the same flavor.
The top level interface will be a fortran file called ***_comp_mct.F90 where *** is atm,
ocn, ice, or lnd. That file exists in all components. Below is a generic summary of
what is going on using the atm component as an example. Other components are
very close.

1. You must support init, run, and final top level interfaces. The interfaces must
follow the naming convention and argument types exactly. These interfaces
must be in a file called atm_comp_mct.F90 and the module must be called
atm_comp_mod. The driver will access the component model only through
the init, run, and final interfaces.

module atm_comp_mct

public :: atm_init_mct
public :: atm_run_mct
public :: atm_final_mct

subroutine atm_init_mct(EClock, cdata_a, x2a_a, a2x_a, NLFilename)
type(ESMF_Clock),intent(in) :: EClock
type(seq_cdata), intent(inout) :: cdata_a
type(mct_aVect), intent(inout) :: x2a_a
type(mct_aVect), intent(inout) :: a2x_a
character(len=*), optional, intent(IN) :: NLFilename ! Namelist filename

subroutine atm_run_mct(EClock, cdata_a, x2a_a, a2x_a)
type(ESMF_Clock) ,intent(in) :: EClock
type(seq_cdata) ,intent(inout) :: cdata_a
type(mct_aVect) ,intent(inout) :: x2a_a
type(mct_aVect) ,intent(inout) :: a2x_a

subroutine atm_final_mct()

2. You must "send" the component grid and decomp at initialization The cdata
datatype contains data for a grid and decomp. The decomp is an mct gsmap
and the grid is an general grid. To access these data type from the init method,
do the following.

type(mct_gsMap), pointer :: gsMap_atm
type(mct_gGrid), pointer :: dom_a

call seq_cdata_setptrs(cdata_a, gsMap=gsMap_atm, dom=dom_a)

! call an mct_gsmap_init method and specify the global index
! of each local gridcell
! call an mct_gGrid_init method and fill the lon/lat/area/mask/frac
! arrays

3. You must pack and unpack coupling fields to/from interface datatypes The
fields coupling datatypes are mct attribute vectors. x2a contains the coupler-
>atm fields. a2x contains the atm->coupler fields. This datatype must be initial-

85

Chapter 6. Use Cases and FAQs

ized by the component in the init method. To do that use the fields list provided
by seq_flds_mod and initialize the gsmap first. lsize below is the local number
of gridcells on the processor. the mct_aVect_init calls below allocate arrays in
the attribute vector to store the appropriate number of fields of appropriate
local size.

use seq_flds_mod

lsize = mct_gsMap_lsize(gsMap_atm, mpicom_atm)
call mct_aVect_init(a2x_a, rList=seq_flds_a2x_fields, lsize=lsize)
call mct_aVect_zero(a2x_a)
call mct_aVect_init(x2a_a, rList=seq_flds_x2a_fields, lsize=lsize)
call mct_aVect_zero(x2a_a)

To pack the data, it’s easiest just to write directly into the arrays inside the
attribute vector in the following manner,

integer :: index_a2x_Sa_pslv ! sea level atm pressure

index_a2x_Sa_pslv = mct_avect_indexra(a2x_a,’Sa_pslv’)

do i=is,ie
a2x_a%rAttr(index_a2x_Sa_pslv ,i) = psl(i)
a2x_a%rAttr(index_a2x_Sa_z ,i) = zbot(i)
a2x_a%rAttr(index_a2x_Sa_u ,i) = ubot(i)
a2x_a%rAttr(index_a2x_Sa_v ,i) = vbot(i)

enddo
To unpack, basically do the same thing in the opposite direction.

integer :: index_x2a_Sx_t ! surface temperature

index_x2a_Sx_t = mct_avect_indexra(x2a_a,’Sx_t’)

do i=is,ie
ts(i) = x2a_a%rAttr(index_x2a_Sx_t ,i)

enddo

The attribute vectors store only the "local" data and you basically just need to
copy data from the model datatype to the coupling MCT (or ESMF) datatype.

4. You must integrate forward a fixed amount of time and confirm that your
model is in sync with the driver clock. You can access clock information from
the EClock passed through the coupling interfaces and the EClockGetData
method. The approach to sync the model and driver clock is very model spe-
cific. In some cases, a model may just get the current time from the EClock and
use it. That probably only happens for models that don’t advance in time (like
maybe a data model). In other cases, model clocks may be initialized based
on the EClock data at initialization and then the model time and driver time
are regularly compared for consistency. Another approach is to use the "dt"
provided by the EClock to advance a model "dt" seconds. Some examples are
provided.

type(ESMF_Clock) ,intent(in) :: EClock

! EClock initialization data
call seq_timemgr_EClockGetData(EClock, &

start_ymd=start_ymd, start_tod=start_tod, &
ref_ymd=ref_ymd, ref_tod=ref_tod, &
stop_ymd=stop_ymd, stop_tod=stop_tod, &
calendar=calendar)

! EClock dt
call seq_timemgr_EClockGetData(Eclock,dtime=atm_cpl_dt)

! EClock current time
call seq_timemgr_EClockGetData(EClock,curr_ymd=ymd_sync,curr_tod=tod_sync, &

curr_yr=yr_sync,curr_mon=mon_sync,curr_day=day_sync)

86

Chapter 6. Use Cases and FAQs

! Check synchronization
ymd=model_ymd
tod=model_tod
if (.not. seq_timemgr_EClockDateInSync(EClock, ymd, tod)) then

write(*,*) "Clocks not in sync"
call shr_sys_abort()

endif

5. You must provide/use "expected" scalar information as needed. Each compo-
nent varies a bit wrt what’s provided and used.

• Provide present/prognostic flags at initialization. The logical flag present
means the component provides data. The logical flag prognostic means the
component uses data. Stub models set both to false. Data models generally
set present to true and prognostic to false, except in cases where a data
model needs some coupling data for some internal computations (e.g.
DOCN-SOM). Active models generally set both flags to true.

call seq_infodata_PutData(infodata, atm_present=.true.)
call seq_infodata_PutData(infodata, atm_prognostic=.true.)

• Provide "nextsw_cday" if you are adding an atm component. Use
nextsw_cday if you are adding a surface model. The real variable
nextsw_cday is the time of the next atm radiation calculation if it occurs at
the next coupling period. If there is no radiation calculation on the next
timestep, this should be set to -1. This allows surface albedos and the atm
radiation calculation to stay synced up. The surface models use the
nextsw_day field and compute albedos based on that time.

call seq_infodata_PutData(infodata, nextsw_cday=nextsw_cday)

• Use the mpi communicator, mpicom, which is provided by the driver to the
component. This must be used for all internal model communication. The
data is provided in the cdata datatype.

call seq_cdata_setptrs(cdata_a, mpicom=mpicom_atm)

• Use stop and restart information provided by the driver. The driver will tell
the component if this is the last coupling period and/or if a restart is re-
quired at the end of this coupling period. The component should listen to
both these flags.

stop_now = seq_timemgr_StopAlarmIsOn(EClock)
restart_now = seq_timemgr_RestartAlarmIsOn(EClock)

• Use inst_name, inst_index, inst_suffix needed for for the multiple instance
capability. As a starting point, the following provides standard code that can
be added:

•

integer(IN) :: COMPID ! mct comp id
integer :: inst_index ! number of current instance (ie. 1)
character(len=16) :: inst_name ! fullname of current instance (ie. "lnd_0001")
character(len=16) :: inst_suffix ! char string associated with instance

call seq_cdata_setptrs(cdata, ID=COMPID)
inst_name = seq_comm_name(COMPID)
inst_index = seq_comm_inst(COMPID)
inst_suffix = seq_comm_suffix(COMPID)

• Use other infodata information as needed (ie. starttype, case_name, config-
uration settings like aqua_planet, orbital settings)

6. Use the I/O unit manager in CESM. To avoid conflicts in I/O unit
numbers between components, models should call the shr_file_getUnit and
shr_file_freeUnit methods to acquire and release available unit numbers.

nunit = shr_file_getUnit()

87

Chapter 6. Use Cases and FAQs

open(nunit,file=’xyz’)
read(nunit,*) xyz
close(nunit)
call shr_file_freeUnit(nunit)

7. Meet filename conventions for history, restart, and log files. There are specific
filename conventions for CESM. In particular, all history files should be CF
compliant netcdf. This format is also recommended for restart files. The format
is something like

$CASE.atm.ha.2001-01.nc ! history
$CASE.atm.r.2001-01-00000.nc ! restart

The log files are set by a shared method. In particular, models should do some-
thing like

!--- open log file ---
if (my_task == master_task) then

logUnit = shr_file_getUnit()
call shr_file_setIO(’atm_modelio.nml’,logUnit)

else
logUnit = 6

endif
That logunit value should then be used by all processors in the model to write
"stdout" messages. shr_file_setIO associates the logUnit number with a unique
log filename for the case. unit 6 is used on non-root processors and informa-
tion written from those processors goes to a stdout file which is machine de-
pendent.

Notes
1. ../modelnl/env_build.html#build_def

2. ../modelnl/env_run.html

3. http://www.earthsystemmodeling.org/download/index.shtml

4. http://www.cesm.ucar.edu/models/cesm1.2/cesm/doc/modelnl/env_run.html#run_pio

5. http://www.cesm.ucar.edu/models/pio/

6. ../modelnl/nl_cam.html

7. ../modelnl/nl_cam.html

8. ../../../cpl7/doc/book1.html

9. ../modelnl/compsets.html

10. ../modelnl/compsets.html

11. ../modelnl/grid.html

12. http://www.earthsystemmodeling.org

13. http://www.earthsystemmodeling.org

14. http://journals.ametsoc.org/doi/abs/10.1175/2009BAMS2618.1

15. http://www.image.ucar.edu/DAReS/DART/

16. http://www.image.ucar.edu/DAReS/DART

17. http://www.image.ucar.edu/DAReS/DART

18. http://www.image.ucar.edu/DAReS/DART

19. https://proxy.subversion.ucar.edu/DAReS/DART/trunk/filter/filter.html#GettingStarted

20. http://www.image.ucar.edu/DAReS/DART/DART_Observations.php#obs_synthetic

21. http://subversion.ucar.edu/DAReS/DART/trunk/diagnostics/threed_sphere/obs_diag.html

88

Chapter 7. CESM Testing

Testing overview
CESM1.2 is accompanied by updated utilities that support automated testing of
the model. In general, these should be used only after the model has been ported
to the target machine (see Chapter 5). The tools are create_production_test and
$create_test.

The create_production_test tool is executed from your $CASEROOT, and tests your
case’s ability to be restarted in a bit-for-bit fashion in a separate directory.

New perl-based $create_test and $query_tests utilities are executed from
$CCSMROOT/scripts and allow you to quickly determine what tests are available
as well as set up and run one of numerous supported tests or create any one of
numerous test suites that are used by the CESM developers for testing the model.

Using create_production_test
In general, after configuring and testing a case and before starting a long production
job based on that case, it’s important to verify that the model restarts exactly. This is
a standard requirement of the system and will help demonstrate stability of the con-
figuration technically. The tool create_production_test is located in the case directory,
and it sets up an ERT two month exact restart test in the same directory as the current
case. To use it, do the following

> cd $CASEROOT
> ./create_production_test
> cd ../$CASE_ERT
> ./$CASE_ERT.test_build
> ./$CASE_ERT.submit

Check your test results. A successful test produces "PASS" as
the first word in the file, $CASE_ERT/TestStatus

If the test fails, see the Section called Debugging Tests That Fail for test debugging
guidance.

Using query_tests
In CESM1.2, automated regression and system tests are now found in a single xml-
based file in $CCSMROOT&/scripts/ccsm_utils/Testlistxml/testlist.xml. The new
utility query_tests allows you to quickly and easily query the different CESM test
categories that are supported as well as what tests are available for different grids,
compsets, machines and compilers. You should use this command to become fa-
miliar with the latest CESM testing capabilities before you utilize create_test. You
should first use the -h option in calling query_tests to document its input options.
query_tests can be called with the following arguments:

query_tests \
-list name

name can be [compsets,grids,compilers,machines,categories,tests] \
-compset name

limit selection to target compset name \
-category name

limit selection to target category name \
-machine name

limit selection to target machine name \
-compiler name

89

Chapter 7. CESM Testing

limit selection to target compiler name \
-grid name

limit selection to target grid name match \
-outputlist

outputs the found tests to the old-style text test lists. \
-outputxml

outputs the found tests to an xml test list.

As an example to see all the tests that are supported for the compset B1850C5CN, call
$query_tests as follows

./query_tests -compset B1850C5CN

And the following output will appear

Compset TestName Grid Machine_compiler Category
==
B1850C5CN (B_1850_CAM5_CN) ERI f19_g16 hopper_pgi prerelease
B1850C5CN (B_1850_CAM5_CN) ERI f19_g16 intrepid_ibm prerelease
B1850C5CN (B_1850_CAM5_CN) ERI ne30_g16 hopper_pgi prebeta
B1850C5CN (B_1850_CAM5_CN) ERI ne30_g16 intrepid_ibm prebeta
B1850C5CN (B_1850_CAM5_CN) ERS ne30_g16 yellowstone_pgi prebeta
B1850C5CN (B_1850_CAM5_CN) ERS ne30_g16 yellowstone_gnu prebeta
B1850C5CN (B_1850_CAM5_CN) ERS ne30_g16 yellowstone_intel prebeta
B1850C5CN (B_1850_CAM5_CN) PFS ne30_g16 edison_intel prebeta
B1850C5CN (B_1850_CAM5_CN) PFS ne30_g16 mira_ibm prebeta
B1850C5CN (B_1850_CAM5_CN) PFS ne30_g16 titan_pgi prebeta
B1850C5CN (B_1850_CAM5_CN) PFS ne30_g16 yellowstone_gnu prebeta
B1850C5CN (B_1850_CAM5_CN) PFS ne30_g16 yellowstone_pgi prebeta
B1850C5CN (B_1850_CAM5_CN) PFS ne30_g16 yellowstone_intel prebeta

To find all the tests that are configured to run on Yellowstone, run:

> ./query_tests -mach yellowstone

The output will show the compset, test name, grid, machine / compiler combina-
ton, test category, and and optional namelist directory. (used for specifying custom
namelists for tests)

To find all the tests configured to run on titan, using the PGI compiler, and using the
’prebeta’ category, run:

> ./query_tests -mach titan -compiler pgi -category prebeta

To find all the tests using the B1850 compset, run:

> ./query_tests -compset B1850

If one wanted a new test list based on a particular query, one can use the -outputxml
option to get the query output in XML format:

> ./query_tests -category aux_clm -outputxml > aux_clm.xml

The above command will give one all of the ’aux_clm’ tests in the file ’aux_clm.xml’.
Then, this test list can be used by create_test to run the aux_clm tests using the -
xml_list option.

90

Chapter 7. CESM Testing

Using create_test
The new $create_test tool is located in the $CCSMROOT/scripts/ directory and can
be used to set up entire CESM test suites, as well as single standalone test cases. To
see the list of test cases, and to view the available script options, execute create_test
-help or create_test without any arguments. Creating a single test looks like:

> cd $CCSMROOT/scripts
> ./create_test -testname ERS.f19_g16.X.yellowstone_intel -testid t01
> cd ERS.f19_g16.X.yellowstone_intel.t01
> ERS.f19_g16.X.yellowstone_intel.t01.test_build
./ERS.f19_g16.X.yellowstone_intel.t01.submit
Check your test results. A successful test produces "PASS" as
the first word in the file TestStatus

The above commands set up an exact restart test (ERS) at the 1.9x2.5_gx1v6 resolu-
tion using a dead model component set (X) for the machine yellowstone. The testid
provides a unique tag for the test in case it needs to be rerun (i.e. using -testid t02).

As an example, to create an entire suite of tests on yellowstone for the ’prebeta’ test
category, do the following:

> cd $CCSMROOT/scripts
> ./create_test \

-xml_mach yellowstone \
-xml_compiler intel \
-xml_category prebeta \
-testid alpha01a \
-testroot /glade/scratch/$USER/alpha01a

The above command will run all of the ’prebeta’ tests in the
ccsm_utils/Testlistxml/testlist.xml file that are configured for the category prebeta
using the Intel compiler on yellowstone. This is almost identical to the development
testing that CSEG carries out on various machines. In addition to creating the suite
of tests in your chosen test root, $create_test will also copy several helper scripts
into the testroot directory. The first will be named cs.status.$testid.$machine. When
run, this script will output the current status of all the tests. The second will be
named cs.submit.$testid.$machine. This script is automatically run when all the test
cases are created, and it builds and submits the suite of tests for you.

Some things to note about CESM tests:

• For usage information about the create_test tool, run "create_test -help".

• Test results are output in the TestStatus file. The TestStatus.out file provides addi-
tional details of the test run, which may aid in debugging failed tests.

• At this time, tests are not always easily re-runnable from an existing test directory.
Rather than rerun a previous test case, it’s recommended to set up a clean test case,
(i.e. create one with a new testid)

• Tests are built using the .test_build script. This is different from regular produc-
tion cases which are built using the .build script. Some tests require more than
one executable, thus the .test_build script builds all required executables upfront
interactively.

• The costs of tests vary widely. Some are short and some are long.

• If a test fails, see the Section called Debugging Tests That Failfor debugging assis-
tance.

• There are -compare, -generate, and -baselineroot options for the create_test tool
that support regression testing. These tools allow one to accomplish several goals:

91

Chapter 7. CESM Testing

• -generate will save log files as well as coupler history NetCDF files in the baseline-
root under the current case name. Later tests will compare their coupler history
files against these baselines to check for numerical differences.

• -compare will compare the current tag’s tests against a previous tag’s results, again
for numerical accuracy.

• -baselineroot simply specifies where you would like your baseline files to be stored.
By default, the test system will choose the configured baseline root for your ma-
chine.

• There are extra test options that can be added to the test such as _D, _E, or _P*.
These are described in more detail in the create_test -help output.

• There is also a new option to create_test, -nlcompareonly. This allows one to cre-
ate a suite of Smoke Build Namelist tests. These tests aren’t compiled or run, the
test cases are simply generated. These are useful in that you can create a suite for
a previous CESM tag, then compare the current CESM tag’s generated namelists
against the previous tag. This can potentially spot hard-to-find answer-changing
errors, and/or unintended changes in development.

The test status results have the following meaning

Test Result Description

BFAIL compare test couldn’t find the baseline
directory for the testcase

BUILD build succeeded, test not submitted

CFAIL env variable or build error

CHECK manual review of data is required

ERROR test checker failed, test may or may not
have passed

FAIL test failed

GEN test has been generated

PASS test passed

PEND test has been submitted

RUN test is currently running OR it hung,
timed out, exceeded its allotted
walltime, or exited abnormally

SFAIL generation of test failed in scripts

TFAIL test setup error

UNDEF undefined result

The following tests are available at the time of writing:

Test Description

SMS smoke test

ERS exact restart from startup, default 6
days initial + 5 days restart

ERB branch/exact restart test

ERH hybrid/exact restart test

ERI hybrid/branch/exact restart test

92

Chapter 7. CESM Testing

Test Description
ERT exact restart from startup, default 2

months + 1 month

SEQ sequencing bit-for-bit test

PEA single processor testing with mpi and
mpi-serial

PEM pe counts mpi bit-for-bit test

PET pe counts mpi/openmp bit-for-bit test

CME compare mct and esmf interfaces test

NCK single vs multi instance validation test

SBN smoke build namelist test

Debugging Tests That Fail
This section describes what steps can be taken to try to identify why a test failed. The
primary information associated with reviewing and debugging a run can be found
in the Section called Troubleshooting runtime problems in Chapter 8.

First, verify that a test case is no longer in the batch queue. If that’s the case, then
review the possible test results and compare that to the result in the TestStatus file.
Next, review the TestStatus.out file to see if there is any additional information about
what the test did. Finally, go to the troubleshooting section and work through the
various log files.

Finally, there are a couple other things to mention. If the TestStatus file contains
"RUN" but the job is no longer in the queue, it’s likely that the job either timed out
because it exceeded its specified wall clock time, or the job hung or exited abnormally
due to some run-time error. Check the batch log files to see if the job was killed due
to a time limit, and if it was, increase the time limit and either resubmit the job, or
generate a new test case and update the time limit before submitting it.

Also, a test case can fail because either the job didn’t run properly or because the test
conditions (i.e. exact restart) weren’t met. Try to determine whether the test failed
because the run failed, or because the test did not meet the test conditions. If a test is
failing early in a run, it’s usually best to set up a standalone case with the same config-
uration in order to debug problems. If the test is running fine, but the test conditions
are not being met (i.e. exact restart), then that requires debugging of the model in the
context of the test conditions.

Not all tests will pass for all model configurations. For more information, please
check the known problems page for this release to find out which machines have
problems with which compsets and/or resolutions.

• All models are bit-for-bit reproducible on different processor counts EXCEPT for
POP2 and CICE diagnostics. The coupler is not bit-for-bit reproducible out of the
box. The BFBFLAG must be set to TRUE in the env_run.xml file for the coupler to
be bit-for-bit reproducible. If you have a configuration where you expect bit-for-bit
reproducibility when you change the processor count AND you want to validate
this, then the BFBFLAG must be set to TRUE in the env_run.xml file if the coupler
is to meet this condition. The main purpose of the BFBFLAG is to enforce a specific
order of operations in the mapping implementation. This constraint can impact
mapping performance so it is recommended that the BFBFLAG be set to FALSE in
production. Also note that the CESM system is fully bit-for-bit reproducible when
rerunning the same configuration on the same processor count. The BFBFLAG is
only required when trying to reproduce answers when changing processor counts.

93

Chapter 7. CESM Testing

• Some of the active components cannot run with the mpi serial library. This library
takes the place of mpi calls when the model is running on one processors and MPI
is not available or not desirable. The mpi serial library is invoked by setting the xml
variable MPILIB to mpi-serial in env_build.xml. An effort is underway to extend
the mpi serial library to support all components’ usage of the mpi library with this
standalone implementation. Also NOT all machines/platforms are set up to enable
setting MPILIB to mpi-serial. See the summary of supported machines1 for details.
To use the mpi serial feature on your machine, you also need to make changes
in the config_compilers.xml and config_machines.xml files for that machine. The
best way to do this is to use a machine where MPILIB can be set to mpi-serial and
look at the type of changes needed to make it work. Those same changes will need
to be introduced for your machine. For the Macros file this includes the name of
the compiler, possibly options to the compiler, and the settings of the MPI library
and include path. For the config_machines.xml file you may want/need to mod-
ify the setting of MPICH_PATH. There also maybe many settings of MPI specific
environment variables that don’t matter when the mpiserial setting is used.

Notes
1. ../modelnl/machines.html

94

Chapter 8. Troubleshooting

Troubleshooting create_newcase
Generally, create_newcase errors are reported to the terminal and should provide
some guidance about what caused the error.

If create_newcase fails on a relatively generic error, first check carefully that the com-
mand line arguments match the interfaces specification. Type

> create_newcase -help

and review usage.

Troubleshooting job submission problems
This section addresses problems with job submission. Most of the problems associ-
ated with submission or launch are very site specific.

First, make sure the runscript, $CASE.$MACH.run, is submitted using the correct
batch job submission tool, whether that’s qsub, bsub, or something else, and for in-
stance, whether a redirection "<" character is required or not.

Review the batch submission options being used. These probably appear at the top
of the $CASE.$MACH.run script but also may be set on the command line when
submitting a job. Confirm that the options are consistent with the site specific batch
environment, and that the queue names, time limits, and hardware processor request
makes sense and is consistent with the case running.

Review the job launch command in the $CASE.$MACH.run script to make sure it’s
consistent with the site specific recommended tool. This command is usually an
mprun, mpiexec, aprun, or something similar. It can be found just after the string
"EXECUTION BEGINS HERE" in the $CASE.$MACH.run script.

The batch and run aspects of the $CASE.$MACH.run script is created by
the setup script and uses a machine specific mkbatch.$MACH script in the
$CCSMROOT/scripts/ccsm_utils/Machines directory. If the run script is not
producing correct batch scripts or job launching commands, the mkbatch.$MACH
script probably needs to be updated.

Troubleshooting runtime problems
To check that a run completed successfully, check the last several lines of the cpl.log
file for the string " SUCCESSFUL TERMINATION OF CPL7-CCSM ". A successful
job also usually copies the log files to the directory $CASEROOT/logs.

Note: The first things to check if a job fails are whether the model timed out, whether a
disk quota limit was hit, whether a machine went down, or whether a file system became
full. If any of those things happened, take appropriate corrective action and resubmit the
job.

If it’s not clear any of the above caused a case to fail, then there are several places to
look for error messages in CESM1.

• Go the $RUNDIR directory. This directory is set in the env_build.xml file. This is
the directory where CESM runs. Each component writes its own log file, and there

95

Chapter 8. Troubleshooting

should be log files there for every component (i.e. of the form cpl.log.yymmdd-
hhmmss). Check each component log file for an error message, especially at the
end or near the end of each file.

• Check for a standard out and/or standard error file in the $CASEROOT directory.
The standard out/err file often captures a significant amount of extra CESM out-
put and it also often contains significant system output when the job terminates.
Sometimes, a useful error message can be found well above the bottom of a large
standard out/err file. Backtrack from the bottom in search of an error message.

• Go the $RUNDIR directory. Check for core files and review them using an appro-
priate tool.

• Check any automated email from the job about why a job failed. This is sent by the
batch scheduler and is a site specific feature that may or may not exist.

• Check the archive directory. If a case failed, the log files or data may still have been
archived. The archiver is turned on if DOUT_S is set to TRUE in env_run.xml. The
archive directory is set by the env variable DOUT_S_ROOT and the directory to
check is $DOUT_S_ROOT/$CASE.

A common error is for the job to time out which often produces minimal error mes-
sages. By reviewing the daily model date stamps in the cpl.log file and the time
stamps of files in the $RUNDIR directory, there should be enough information to
deduce the start and stop time of a run. If the model was running fine, but the batch
wall limit was reached, either reduce the run length or increase the batch time limit
request. If the model hangs and then times out, that’s usually indicative of either a
system problem (an MPI or file system problem) or possibly a model problem. If a
system problem is suspected, try to resubmit the job to see if an intermittent prob-
lem occurred. Also send help to local site consultants to provide them with feedback
about system problems and to get help.

Another error that can cause a timeout is a slow or intermittently slow node. The
cpl.log file normally outputs the time used for every model simulation day. To review
that data, grep the cpl.log file for the string, tStamp

> grep tStamp cpl.log.* | more

which gives output that looks like this:

tStamp_write: model date = 10120 0 wall clock = 2009-09-28 09:10:46 avg dt = 58.58 dt = 58.18
tStamp_write: model date = 10121 0 wall clock = 2009-09-28 09:12:32 avg dt = 60.10 dt = 105.90

and review the run times for each model day. These are indicated at the end of each
line. The "avg dt = " is the running average time to simulate a model day in the current
run and "dt = " is the time needed to simulate the latest model day. The model date
is printed in YYYYMMDD format and the wall clock is the local date and time. So in
this case 10120 is Jan 20, 0001, and it took 58 seconds to run that day. The next day,
Jan 21, took 105.90 seconds. If a wide variation in the simulation time is observed for
typical mid-month model days, then that is suggestive of a system problem. How-
ever, be aware that there are variations in the cost of the CESM1 model over time.
For instance, on the last day of every simulated month, CESM1 typically write netcdf
files, and this can be a significant intermittent cost. Also, some models read data mid
month or run physics intermittently at a timestep longer than one day. In those cases,
some run time variability would be observed and it would be caused by CESM1, not
system variability. With system performance variability, the time variation is typi-
cally quite erratic and unpredictable.

Sometimes when a job times out, or it overflows disk space, the restart files will get
mangled. With the exception of the CAM and CLM history files, all the restart files
have consistent sizes. Compare the restart files against the sizes of a previous restart.
If they don’t match, then remove them and move the previous restart into place be-
fore resubmitting the job. Please see restarting a run.

On HPC systems, it is not completely uncommon for nodes to fail or for access to
large file systems to hang. Please make sure a case fails consistently in the same place

96

Chapter 8. Troubleshooting

before filing a bug report with CESM1.

Additional Troubleshooting Information
The Community Land Model (CLM) documentation, Chapter 6.1, provides some ad-
ditional trouble shooting tips that may be useful beyond those listed here.

Notes
1. http://www.cesm.ucar.edu/models/cesm1.2/clm/models/lnd/clm/doc/UsersGuide/c12493.html

97

Chapter 8. Troubleshooting

98

Glossary

Branch

One of the three ways to initialize CESM runs. CESM runs can be started as
startup, hybrid or branch. Branch runs use the BRANCH $RUN_TYPE and the
restart files from a previous run. See setting up a branch run.

case

The name of your job. This can be any string.

$CASE

The case name. But when running create_newcase, it doubles as the case direc-
tory path name where build and run scripts are placed. $CASE is defined when
you execute the create_newcase command;, and set in env_case.xml. Please see
create a new case.

$CASEROOT

$CASEROOT - the full pathname of the root directory for case scripts
(e.g. /user/$CASE). You define $CASEROOT when you execute the
create_newcase, and is set in env_case.xml. $CASEROOT must be unique.

component

component - Each model can be run with one of several components. Examples
of components include CAM, CICE, CLM, and POP. Component names will al-
ways be in all caps.

component set (compset)

Preset configuration settings for a model run. These are defined in component
sets1.

$CCSMROOT

The full pathname of the root directory of the CESM source code. $CCSMROOT
is defined when you execute the create_newcase command.

$EXEROOT

The case executable directory root. $EXEROOT is defined when you execute the
configure command, and is set in env_build.xml.

hybrid run

A type of run. Hybrid runs use the HYBRID $RUN_TYPE and are initialized as
an initial run, but use restart datasets from a previous CESM case. Please see
setting up a hybrid run.

99

Glossary

$MACH

The supported machine name, and is defined in env_case.xml when you run
the configure command. Please see hardware platforms2 for the list of supported
machines.

model

CESM is comprised of five models (atm, ice, glc, lnd, ocn) and the coupler, cpl.
The word model is loosely used to mean any one of the models or the coupler.

model input data

Refers to static input data for the model. Input data are provided as part of the
release via an inputdata area or data from a server.

release

A supported version of CESM.

restart

Refers to a set of data files and pointer files that the model generates and uses to
restart a case.

$RUNDIR

The directory where the model is run, output data files are created, and log
files are found when the job fails. This is usually $EXEROOT/run, and is set
in env_build.xml by the configure command.

tag

A version of CESM. Note: A tag may not be supported.

Notes
1. ../cesm1.1/cesm/modelnl/compsets.html

2. ../modelnl/machines.html

100

	CESM User's Guide (CESM1.2 Release Series User's Guide) (PDF1)
	Table of Contents
	Chapter 1. Introduction
	How To Use This Document
	CESM Model Version Naming Conventions

	CESM Overview
	CESM Software/Operating System Prerequisites
	CESM Components
	CESM Component Sets
	CESM Grids
	CESM Machines
	CESM Validation

	Downloading CESM
	Downloading the code and scripts starting with CESM1.2.1
	Obtaining new release versions of CESM prior to CESM1.2.1
	Downloading input data

	Quick Start (CESM Workflow)

	Chapter 2. Creating and Setting Up A Case
	How to create a new case
	New Component Set Naming Convention
	New Overall Model Grid Naming Convention
	Using createnewcase

	How to set up a case and customize the PE layout
	Calling cesmsetup
	Changing the PE layout

	Multiinstance component functionality
	Modifying an xml file
	Cloning a case (Experts only)

	Chapter 3. Building CESM
	How do I build my model?
	Input data
	Usercreated input data
	Using the input data server

	Rebuilding the model

	Chapter 4. Running CESM
	Customizing runtime settings
	Controlling starting, stopping and restarting a run
	Customizing componentspecific namelist settings
	Controlling output data

	Load balancing a case
	Model timing data
	Using model timing data

	How do I run a case?
	Setting the time limits
	Submitting the run
	Restarting a run
	Backing up to a previous restart

	Data flow during a model run
	No archiving
	Shortterm archiving
	Longterm archiving

	Testing a case

	Chapter 5. Porting and Validating CESM on a new platform
	Porting Overview
	Step 1: Use createnewcase with a userdefined machine name
	Step 2: Enabling outofthe box capability for your machine
	Step 3: Port Validation

	Chapter 6. Use Cases and FAQs
	BASICS: A basic example
	BASICS: How do I set up a branch or hybrid run?
	BASICS: What calendars are supported in CESM?
	BASICS: How do I change processor counts and component layouts on processors?
	BASICS: What are CESM xml variables and CESM environment variables?
	BASICS: How do I modify the value of CESM xml variables?
	BASICS: Why aren't my $CASEROOT xml variable changes working?
	BASICS: How do I run multiple cases all using a single executable?
	BASICS: How do I use the ESMF library and ESMF interfaces?
	BASICS: Why is there file locking and how does it work?
	BASICS: What are the directories and files in my case directory?
	IO: What is pio?
	IO: How do I use pnetcdf?
	CAM: How do I customize CAM output fields?
	CAM: How do I customize CAM forcings?
	CAM/CLM: How do I change history file output frequency and content for CAM and CLM during a run?
	CAM: How do I use B compset history output to create SST/ICE data files to drive an F compset?
	POP/CICE: How are CICE and POP decompositions set and how do I override them?
	POP: How do I initialize POP2 with a spunup initial condition?
	DRIVER: Is there more information about the coupler/driver implementation?
	DRIVER: How do I pass in new fields between components?
	EXPERTS: How do I add a new userdefined component set?
	EXPERTS: How do I add a new userdefined grid?
	EXPERTS: How do I carry out data assimilation using CAM and DART?
	EXPERTS: How do I add a new CESM model component?

	Chapter 7. CESM Testing
	Testing overview
	Using createproductiontest
	Using querytests
	Using createtest
	Debugging Tests That Fail

	Chapter 8. Troubleshooting
	Troubleshooting createnewcase
	Troubleshooting job submission problems
	Troubleshooting runtime problems
	Additional Troubleshooting Information

	Glossary
	Branch
	case
	$CASE
	$CASEROOT
	component
	component set (compset)
	$CCSMROOT
	$EXEROOT
	hybrid run
	$MACH
	model
	model input data
	release
	restart
	$RUNDIR
	tag

