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ABSTRACT
Methods for apportioning sources of ambient particulate
matter (PM) using the positive matrix factorization (PMF)
algorithm are reviewed. Numerous procedural decisions
must be made and algorithmic parameters selected when
analyzing PM data with PMF. However, few publications
document enough of these details for readers to evaluate,
reproduce, or compare results between different studies.
For example, few studies document why some species
were used and others not used in the modeling, how the
number of factors was selected, or how much uncertainty
exists in the solutions. More thorough documentation
will aid the development of standard protocols for ana-
lyzing PM data with PMF and will reveal more clearly
where research is needed to help future analysts select
from the various possible procedures and parameters
available in PMF. For example, research likely is needed to
determine optimal approaches for handling data below
detection limits, ways to apportion PM mass among
sources identified by PMF, and ways to estimate uncer-
tainties in the solution. The review closes with recom-
mendations for documenting the methodological details
of future PMF analyses.

INTRODUCTION
Positive matrix factorization (PMF) is a recent develop-
ment in the class of data analysis techniques called factor
analysis,1 in which the fundamental problem is to resolve
the identities and contributions of components in an

unknown mixture.2 PMF has been used extensively for
source apportionment of ambient particulate matter
(PM), where the goal is to resolve the mixture of sources
that contributes to PM samples. PMF is especially appli-
cable to working with environmental data because it: (1)
incorporates the variable uncertainties often associated
with measurements of environmental samples and (2)
forces all of the values in the solution profiles and contri-
butions to be nonnegative, which is more realistic than
solutions from previously used methods like principal
components analysis.

Modern-day sampling networks, such as the Specia-
tion Trends Network (STN),3 the Interagency Monitoring
of Protected Visual Environment (IMPROVE) Network,4

and the Southeastern Aerosol Research and Characteriza-
tion (SEARCH) Study Network,5 provide time-resolved
speciated ambient aerosol data that include trace and
crustal elements, ions, organic (OC) and elemental carbon
(EC) fractions, and PM concentrations. PMF has been
used to identify and apportion sources of airborne PM by
analyzing these species (or a subset) measured at numer-
ous locations around the United States, including urban
locations, such as Phoenix, AZ6; Washington, DC7; Hous-
ton, TX8; Narragansett, RI9; New York, NY10,11; Seattle,
WA12; Atlanta, GA13–16; and Baltimore, MD17; and at rural
and remote locations, such as Vermont18,19; Alaska20; Spo-
kane, WA21; Potsdam and Stockton, NY22; Brigantine,
NJ23,24; and San Gorgonio, CA.25 Similar methods have
been applied to locations outside the United States, such
as Bangladesh26; Thailand27; the Arctic region28; Chile29;
Vietnam30; Ireland31; Hong Kong32–34; Toronto, Cana-
da35,36; Beijing37,38; Spain39; New Zealand40; the U.K.41;
and Finland.42 Profiles and contributions of PM from pri-
mary sources, such as motor vehicles, residential and in-
dustrial fuel combustion, biomass burning, soil dust, and
sea salt are typically identified by PMF analyses in these
studies. Secondary sources, such as atmospheric oxidation
of sulfate and nitrate and heterogeneous gas-to-particle
conversion reactions on soil dust surfaces, have also been
identified with PMF.43

Despite the extensive use of PMF, there exists consid-
erable variation in the procedures followed and decisions
made to apportion sources of ambient PM using PMF.
This paper summarizes the different procedures and

IMPLICATIONS
Numerous recent studies have performed source appor-
tionment of ambient PM using the PMF receptor model.
After summarizing the methods of previously published
papers, the authors recommend that future publications
fully document the procedures used to prepare PM data,
apply PMF, and interpret the results. This will ensure that
future analyses of PM data with PMF are based on clear
and precise methods, which will aid in both future research
of atmospheric PM and in using PMF in the development of
air quality management strategies.
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decisions available in published literature regarding the
modeling of time-resolved, speciated ambient PM data
using PMF. The modeling procedures may be divided into
three broad steps: (1) preparing data to be modeled, (2)
processing the data with PMF to develop a feasible and
robust solution, and (3) interpreting the solution. Specific
decisions, such as the creation of data uncertainties, se-
lection of the best number of factors, and treatment of
outliers, need to be made when carrying out these steps.
This summary will enumerate which steps are common
and which are unique and is used as a basis to recommend
what documentation is necessary to reproduce and stan-
dardize PMF analyses in the future.

PMF METHODS
The form of the PMF model most widely used to analyze
PM network data is the bilinear model that expresses
observations of PM species as the sum of contributions
from a number of time-invariant source profiles. Specifi-
cally, the mathematical model in matrix form is:

X � G � F � E (1a)

or, in index notation:

xij � �
k � 1

p

gikfkj � eij (1b)

where xij is the concentration of species j measured on
sample i, p is the number of factors contributing to the
samples, fkj is the concentration of species j in factor
profile k, gik is the relative contribution of factor k to
sample i, and eij is error of the PMF model for the species
j measured on sample i. In the literature, factors resolved
by PMF are often interpreted as sources, although they are
not necessarily synonymous.18 The goal is to find values
of gik, fkj, and p that best reproduce xij. The values of gik

and fkj are adjusted until a minimum value of Q for a
given p is found. Q is defined as:

Q � �
i � 1

n �
j � 1

m �eij

�ij
�2

(2)

where �ij is the uncertainty of the jth species concentra-
tion in sample i, n is the number of samples, and m is the
number of species. Three programs have been developed
to solve eq 2. PMF2 was developed in the early 1990s 1 and
has been the more widely used program to date. The
multilinear engine (ME) was developed in 1999.44 It is
more flexible than PMF2 and can solve more general
equations than just eq 2. Recently, the graphical user
interface-based U.S. Environmental Protection Agency
(EPA)-PMF program was developed to provide a user-
friendly environment that uses ME to solve the bilinear
model (eq 1).45 Further details of the PMF model can be
found elsewhere.1

Data Preparation
Initially, all of the available species and ambient samples
in a dataset are typically considered for source apportion-
ment of PM with PMF, and then analyses are used to
exclude specific species, samples, or individual measure-
ments. PM ions, carbon, and metals are frequently in-
cluded in the data matrix to be analyzed with PMF, and
other measurements, such as gaseous species, meteorolog-
ical parameters, and particulate polycyclic aromatic hy-
drocarbons, have also been occasionally used.22,41,46

A matrix of uncertainties (�ij) corresponding with
each entry in the measurement matrix must also be sup-
plied as input to PMF, which is considered by the model
when minimizing Q defined in eq 2. The simplest method
for creating such a matrix is to use the analytical or
method uncertainties that correspond with each species
concentration value when available.18,31 Equations that
are functions of concentrations, analytical uncertainties,
and/or detection limits have also been used to create the
uncertainty matrix. Some of these formulas are presented
in Table 1. To estimate uncertainties either directly or
using equations generally requires knowledge of analyti-
cal uncertainties and possibly method detection limits. If
such are not available, historical information, informa-
tion from similar networks, or best engineering principles
may be used.47 In addition, the calculated uncertainties
are sometimes increased by factors of two to five if sources
of variability are known to increase the sampling or ana-
lytical uncertainty.13,48

The choice of species to include in the data matrix
and the uncertainties to associate with them depend on
the goals of the study at hand and on the quality of
available species measurements. The processes of species
selection and constructing the uncertainty matrix provide
the user a modicum of control over the derivation of PMF
solutions. Six common considerations when preparing
PM data for PMF analysis and methods of dealing with

Table 1. Methods of calculating uncertainties for PMF analyses of PM
data.

Formula for PMF Uncertainty (�ij) References

sij � C3 � �xij� 27
(0.05 � xij) � DLij 10

sij �
DLij

3 7, 11, 12, 13, 15, 20, 23, 24, 54

s�j �
DLj

3
46

sij � 0.2 � DLij 6

0.3 � DLij 71

kj � xij �
DLij

3 47

�ajsij
2 � bjDLij

2 19

��rep�2 � �0.05 � xij�
2 39

�3 � �sij�
2 � DLij

2 52

Notes: sij � analytical uncertainty; DLij � method detection limit; C3 � value
between 0.1 and 0.2; rep � reproducibility; k � fraction developed for each
species by analyzing uncertainty vs. concentration plots; aj,bj � scaling
factors; overbar � average.
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them are species relevance, duplicate information, miss-
ing data, data below detection limits, poor or unknown
data quality, and apportionment of PM mass among
sources. Each is discussed in detail below.

Species Relevance. Receptor models, such as PMF, implic-
itly assume that temporally covarying measurements
originate from the same source. Measurements that are
not indicative of any sources expected to contribute to
samples under study are, therefore, discarded from some
PMF analyses. Presumably, this is justified by the expec-
tation that such measurements will act only as a source of
noise and interfere with the process of fitting the PMF
model. For example, analyses by Buzcu et al.8 specifically
targeted sources of primary PM so carbon and sulfur spe-
cies were excluded, because their secondary production
pathways are significant. Sirois and Barrie49 analyzed PM
sampled in the Arctic region and selected species in a way
that minimized the influence of seasonally varying mete-
orological processes on the PMF results to improve source
segregation and identify chemical transformations.
Huang et al.9 calculated PMF solutions both with and
without “weak elements” (defined as species with “ana-
lytical difficulties or anomalous values”), found that in-
cluding those elements tended to result in physically
meaningless PMF factors, and concluded that excluding
weak elements improved the PMF analyses. Ito et al.10

excluded species not deemed useful as source tracers.

Duplication of Measurements. Another consideration dur-
ing species selection is whether or not to include chemi-
cally redundant species in the PMF data matrix. For ex-
ample, should sulfur, sulfate (which contains sulfur), or
both be included? Some studies have included either sul-
fur or sulfate as a fitting species but not both. A common
justification given for excluding one of these species is to
avoid double counting the sulfur atoms.7,10,12,23,25 Double
counting also occurs if pairs of elemental and ionic spe-
cies are used, such as Na and Na�, K and K�, Ca and Ca2�,
Mg and Mg2�, or Cl and Cl�.23,43,47 In one case,12 Cl
rather than Cl� was used because of the better precision of
X-ray fluorescence-detected Cl compared with Cl� mea-
sured by ion chromatography. Carbon can also be double
counted by including OC and EC, as well as total carbon,
or by including temperature-resolved carbon fractions in
addition to OC and EC,13,23,50,51 but no literature was
found that discusses the double counting of carbon.

Missing Data. PMF2 requires that values be present in all
entries of a data matrix for analysis. Missing species mea-
surements in individual samples must, therefore, be dealt
with in some way. Three approaches have been used in
previous work. The first approach is to eliminate samples
(rows of the data matrix) for which any measurement is
missing. This is the approach generally used when either
a key species or several species are missing measure-
ments.9,25 A second approach is to eliminate the species
(columns of the data matrix) from the PMF analysis com-
pletely. This is typically used when a large percentage of
species’ observations are missing.25,34 The third approach

is to impute a value and associate a large uncertainty with
this value so it has little influence in the PMF modeling. A
common procedure for this third approach is to impute
either the arithmetic or geometric mean species value for
missing values and use a multiple, such as 3 or 4, of the
mean concentration for the uncertainty value.20,46,52

When uncertainties are equation based, coefficients in the
equation can be adjusted to account for missing data.19

Huang et al.9 compared the method of deleting samples
with missing measurements (“casewise deletion”) with
the method of replacing missing values with mean species
measurements (“mean substitution”) and saw that (1)
crustal and marine factor profiles were more realistic
when using mean substitution, and (2) physically unreal-
istic factor profiles were less likely to occur in the PMF
solutions with mean substitution. The authors thus con-
cluded that mean substitution gives superior PMF results
to casewise deletion.

Data below Detection Limits. Many papers discuss adjust-
ing species measurements and uncertainties of which the
concentration is smaller than the detection limit (DL)
before PMF analysis. A very popular method for doing this
seems to have originated in the work of Polissar et al.,20

where data below DL was replaced with the value DL/2,
and (5/6)�DL was used as the corresponding uncertainty
value. Huang et al.31 applied the mean substitution
method to data below DL, treating it like missing data.
Polissar et al.19 substituted DL/2 for concentrations below
DL and applied one uncertainty equation to all of the data
both above and below DL (see Table 1) but set sij equal to
zero in that equation for data below DL. Some previous
works have advocated completely dropping species that
have a large number (�95%) of measurements smaller
than DLs.25,34,47,49 It is also common for the issue of DLs
to receive no discussion at all in papers reporting PMF
results of ambient PM species.

Poor or Unknown Data Quality. Data quality might be
questionable for reasons other than missing values or
measurements below DLs. Such data can be handled dur-
ing the data preparation process by either downweighting
(increasing the uncertainties) or discarding the measure-
ments in question. Recently, Paatero and Hopke53 pro-
vided detailed suggestions for adjusting uncertainties and
dropping species from the PMF analysis based on the
signal-to-noise ratios of the measurements. This method
has seen some use in PMF analyses of PM data since its
proposal.25,47 Sometimes an initial PMF analysis reveals
species that are poorly fit by the model (as evidenced by
large or nonnormally distributed scaled residuals), and
subsequent runs are performed with those species down-
weighted.14,15 In the work of Kim et al.,47 it was noted that
a subset of Na� measurements was contaminated, and
rather than eliminating or downweighting all the data of
that species, the contaminated measurements were
treated as missing data. Kim et al.47 also used a priori
knowledge to exclude a sample with very high PM and
OC concentrations from the PMF analysis to ensure a
good fit of the PMF model to the data at hand.
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Total PM Mass Apportionment. If a purpose of the receptor
modeling application is to apportion PM mass, then one
of two general approaches is used. The first is to include
PM as a species in the data matrix to be analyzed with
PMF.47,48 If PM mass is included in the data matrix input
to PMF, then the PMF model will apportion PM to each
factor just as it apportions the other species. Recently it
has been suggested that the uncertainties of PM mass
concentrations should be substantially increased when
used in the PMF analyses to ensure that it does not affect
the resulting PMF solution.48 Including PM as a fitting
species might be considered an example of double count-
ing, because all of the other particulate species used in the
PMF analysis are contained in the total PM mass.

The second method of apportioning total PM mass is to
exclude total PM mass measurements from the data matrix
and regress the factor contributions from PMF onto the PM
mass measurements,6–8,10,12,15,16,18–20,22–25,29,30,35,36,40,52,54,55

as shown in the following equation:

PMi � �
k � 1

p

gikak (3)

PMi is the total PM mass measurement from sample i, and
ak is the regression coefficient for factor k resulting from
regressing the factor contributions (gik) onto PMi. In the
regression, it is often assumed that the explanatory vari-
ables (gik) are error free, but this assumption is invalid.
Proponents of the second approach argue that negative
values of ak are a good indication that too many factors
have been used in the PMF modeling. In such cases, the
PMF modeling is redone with fewer factors, and the PMF
contributions are regressed onto the PM measurements
again.

PMF Analysis
After data and uncertainty matrices are created, they are
input to a PMF program for source apportionment. The
algorithms used by the PMF2 and ME programs differ
somewhat and might be expected to yield different results
when used on the same dataset. In both programs, the
modeling process begins with seed values (which can be
either random or user-specified) for each entry in the G
and F matrices (eq 1). The dimensions of the G and F
matrices are determined by the user’s selection of the
number of factors (p) to fit to the data. Values in the G and
F matrices are iterated until a minimum value of Q is
found or the limit on the number of iterations is ex-
ceeded, in which case PMF is said not to converge.

The above discussion illustrates the mechanics be-
hind the PMF programs. These inner workings need to be
considered when searching for valid PMF solutions so
that the various parameters under user control are ad-
justed appropriately. The procedural steps for producing a
PMF solution are: (1) determine the parameters of the
PMF run, (2) run the PMF program, (3) check the model
fit, and (4) assess the solution uncertainties. Details for
each of these steps are discussed below.

PMF Parameters. Before running a PMF analysis, the pa-
rameters of the program being used must be set. Parame-
ters under user control and typical ways of using them are
discussed below. Further discussion of the theory behind
these and other parameters can be found in the PMF and
ME program manuals.56,57

(1) Robust Mode and Outliers: The PMF algorithm is essen-
tially a weighted least-squares technique that describes rela-
tionships among species measurements. It is designed to
describe the average behavior of data, which can be dis-
turbed by atypical measurements present in the data and
uncertainty matrices. The influence of such data on PMF
solutions has very frequently been diminished by using the
robust mode. When robust mode is used, the uncertainties
of measurements for which the scaled residuals (eij/�ij in eq
2) are greater than the parameter, called the outlier distance
(	), are increased to downweight their influence on the PMF
solution. Most PMF analyses of PM data that report 	 values
give a value of 	 � 4.7,8,11,13–15,22–24,27,29,30,34,52,55,58,59 When
robust mode is used, Q is defined as:

QRobust � �
i � 1

n �
j � 1

m � eij

hij�ij
� 2

(4)

where

hij � 1 for �eij/�ij� � 	 (5a)

hij � �eij/�ij�/	 for �eij/�ij� � 	 (5b)

In robust mode, the PMF algorithm attempts to minimize
QRobust rather than Q as defined in eq 2 (hereafter, the
latter is referred to as QTrue).

(2) Number of Factors: A major consideration in searching
for the PMF solution is finding the best number of factors
(p) to fit to the dataset. A very common strategy for
finding the optimum number of factors in the PMF solu-
tion is to examine Q values for PMF solutions resulting
from a range of p values. If p approximates the number of
underlying factors in the data and the data and uncertain-
ties abide by the bilinear model (eqs 1 and 2), then Q
(referred to as QTheory) should be approximately equal to
the number of data points in the xij matrix (i.e., QTheory 

i � j). The PMF solution with a Q value (either QRobust or
QTrue, depending on whether or not robust mode was
used) closest to QTheory is considered to be a good starting
point for solution interpretation. If this solution lacks
physical validity, solutions with values of p surrounding
this optimum value are examined until the most physi-
cally valid solution is found.10,14 Some researchers con-
sider PMF solutions that result in negative coefficients
when the factor contributions are regressed onto PM mass
(discussed above) to be physically invalid.15 Frequently,
the Q values, the results of post-PMF regression (eq 3), the
goodness of PMF model fit (discussed below), and the
model interpretability (discussed below) are all considered
together to select an optimum value of p.
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(3) Rotations: Even with the constraints imposed by non-
negativity, there can exist a multiple (possibly an infinite)
number of F and G matrices that all produce the same
minimum value of Q.60 The existence of this range of
possible solutions is referred to as rotational freedom and
contributes to uncertainty in PMF solutions. A thorough
discussion of rotations and their relevance to PMF analy-
sis is provided by Paatero et al.61

In studies that use the PMF2 program, the most com-
mon method of rotating solutions is to adjust the param-
eter called FPEAK, which forces rows and columns of the
F and G matrices to be added and/or subtracted from each
other depending on the sign of the FPEAK value. Typi-
cally, PMF solutions for multiple values of FPEAK are
explored, and the resulting Q values, F and G matrices,
and scaled residuals are examined to select the optimum
solution. Typically, values of FPEAK that are selected lie
between �1 and �1.29,58 Paatero et al.62 recently proposed
a method of finding optimal values of FPEAK by plotting
factor contributions from the PMF analysis (columns of
the G matrix) against each other and adjusting FPEAK
until so-called “edges” in the plots become parallel to the
plot axes.

Another method of inducing rotations when using
PMF2 is through the use of the “Fkey” and “Gkey” matri-
ces. Fkey and Gkey allow the user to specify whether
values in the F and G matrices should be zero and how
strongly that constraint should be applied. For example,
Lee et al.34 noted that sulfate was present in a number of
their factors that were physically interpreted as sources
that should not have sulfate in their profiles, such as
vehicular emissions, smelters, and soil dust. Different val-
ues in the Fkey matrix were thus explored to “pull” sulfate
in those factor profiles (F matrix) to 0 while maintaining
the physical and statistical validity of the rest of the PMF
solution. It is not possible to specify non-zero target val-
ues with the Fkey and Gkey matrices in PMF2. Fkey has
received moderate use in PMF analyses of PM data,7,15,34

but no uses of Gkey were found in the literature.
In the ME program, there is currently no automatic

rotation feature like FPEAK, Fkey, or Gkey; rotations of
interest must be specified by the user in the program’s
scripting language. For example, some PM source appor-
tionments studies with ME have solved eq 1 while also
requiring the G matrix to be a function of wind speed and
direction.14,63,64 This is thought to reduce rotational am-
biguity by placing additional constraints on the solution
that are representative of the real world.

(4) Error Model: The error model refers to the method by
which PMF calculates uncertainties at each iteration of
the program. By default, PMF uses an error model that
uses uncertainties exactly as provided by the user for each
iteration of the numerical algorithm. It is also possible to
indicate error models that force PMF to recalculate the
uncertainty matrix after each iteration based on the cur-
rent predictions of entries in the X matrix. A number of
PMF analyses of PM data have used the dynamic error
model,17,29,34,36,40,41,59,65 but most publications do not
provide any documentation about the error model.

Running the PMF Program. After assigning values for the
various parameters discussed above, the PMF program can
be run using the data and uncertainty matrices as input.
Various outputs, such as the G and F matrices, Q values,
and scaled residuals, are produced by the programs. Some
publications document performing multiple runs of PMF
with different seed values and using the solution with the
lowest Q values to ensure that a global minimum has been
reached.29,48 This also provides a method of checking that
the PMF solution consistently converges, although this is
not typically discussed in publications.

Goodness of Model Fit. A common first estimate of the
goodness of the model fit is to see how well the minimum
Q value from the PMF model compares with QTheory.20,22

A more detailed assessment of the goodness of the PMF
model’s fit can be done by comparing the predicted spe-
cies concentrations with the original measurements.
Many studies do this with only the total PM mass mea-
surements,6,19 but some have done this comparison with
all of the species used in the data matrix.39 This actual
versus apportioned comparison is typically done visually
with scatter plots and statistically with regression; Buzcu
et al.8 used the coefficient of divergence to perform this
comparison.

Another method of assessing PMF model fit is to
examine the distributions of scaled residuals (eij/�ij in eq
2). Some researchers try to ensure that scaled residuals for
most species in their datasets lie between certain limits,
typically �2 and �2.22,40 The shape of the distribution of
scaled residuals for a given sample across all species can
also provide useful insights.24 Distributions with large
spread might indicate that uncertainties are too low, and
distributions concentrated near zero might indicate that
uncertainties are too high. The information gleaned from
the scaled residuals has been used as a diagnostic tool for
adjusting species’ uncertainties in subsequent runs of
PMF15; however, this procedure must be done cautiously,
because it generally invalidates the comparison of Q to
QTheory as an indicator of the PMF model’s goodness of fit.

Model Uncertainties. A number of phenomena can con-
tribute to uncertainty in the solutions modeled by PMF
including temporal variation of PM source profiles, mea-
surement error, sampling variability, and errors in the
modeling process, such as rotational ambiguity and mis-
specified number of factors. Some publications provide
measures of uncertainties on factor profiles,12,22 which are
likely calculated by propagating measurement errors
through PMF,19 but very often no explanation of the
profile error calculations is given.

To attempt to account for many of the sources of
error listed above, the technique of bootstrapping66 can
be used. Bootstrapping involves randomly selecting n
samples with replacement from a dataset to create a new
dataset, executing PMF on this bootstrapped sample, and
estimating factor profiles. Several hundred bootstrapped
datasets are modeled and summary statistics calculated.
Bootstrapping can, thus, be used to determine the preci-
sion of PMF profiles by calculating the standard deviation
(assuming normality) or various percentiles of factor pro-
files (F matrix values) from numerous bootstrap runs.
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Bootstrapping is available for use in EPA-PMF,45 al-
though no use of the technique has been found in PMF
publications to date. A technique very similar to boot-
strapping was applied by Hedberg et al.,29 who estimated
the effect of sample size on PMF solutions by reconstruct-
ing their original dataset with 85%, 70%, 50%, and 33%
of the original samples. Data subsets of these four sizes
were randomly constructed and analyzed with PMF 30
times (always with Fpeak � 0), and the means, standard
deviations, and relative errors of the factor profiles (F
matrix) were calculated. Relative errors were found to
increase as sample size decreased, but the authors con-
cluded that their solution was stable, because the same
sources could be identified in most of the solutions
generated.

Solution Interpretation and Analysis
Source Identification. The most subjective and least quan-
tifiable step in applying PMF for PM source apportion-
ment is assignment of identities to the p factors. A com-
mon strategy is to search the literature for measured PM
source profiles with characteristics similar to factor pro-
files in the F matrix.17,52 Databases of source profiles, such
as SPECIATE,67 are available for such analyses, although
their use for this purpose is infrequently documented.10

More precise identification can be performed by compar-
ing certain species ratios (sometimes called “enrichment
factors”) in PMF profiles to the same ratios in measured
PM source profiles.9,49 Some researchers perform local
and/or regional source sampling along with the ambient
PM sampling to identify PMF profiles,29 which helps min-
imize uncertainty in the identification process, because
the sampled sources should resemble PMF profiles more
strongly than source profiles collected in other locations.
Some recent PMF publications have made comparisons to
factor profiles from previously published PMF studies to
aid in source identification.13

The patterns exhibited by time series of source con-
tributions (G matrix) can also be used to assist in source
identification. For example, a source believed to be resi-
dential wood combustion should likely have largest con-
tributions during cold winter months, and a source be-
lieved to be secondary sulfate and OC is likely to have
peaks in the summer when photochemical activity is
high.6 Plots of contributions versus time are frequently
given in papers, from which daily, weekly, seasonal, and
yearly oscillations of source contributions can be seen.
Mean source contributions by season and by day of week
(weekend versus weekday) are typically examined as well.
In addition, some authors have performed more complex
time-series analysis on the source contributions.16,49

Auxiliary Analyses. Many researchers combine the PMF
results with auxiliary information to aid in associating
sources, source types, or source regions with factor pro-
files. For example, local wind trajectories are often ana-
lyzed in conjunction with PMF analyses of PM. This helps
identify directions or areas from which emissions likely
originate and can sometimes identify specific sources cor-
responding with factors in the F matrix. Conditional

probability function,15,26 potential source contribution
function,22,50 cluster analysis,24 and residence time anal-
ysis18 are some techniques for analyzing wind trajectories
that have been used to aid in the identification of PMF
factors.

Some studies have augmented PMF results with dis-
persion modeling of the episodes during which the PM
samples were collected. Hedberg et al.29 compared source
contributions of local smelters to ambient arsenic concen-
trations calculated using both PMF and a dispersion
model and found dispersion modeling to give a larger
source contribution than PMF. Qin and Oduyemi41 used a
dispersion model to estimate the contributions of vehicle
emissions to ambient PM, because PMF was unable to
resolve a profile for motor vehicles, a source known to be
present in the airshed under study.

Regression of PM source contributions (from the G
matrix) onto data collected concurrently with the PM
samples can often yield insights into the airshed under
study. Previous researchers have regressed the G matrix
onto meteorological data; onto gases such as NOx, O3,
NH3, and CO; and onto the same PM species used in the
PMF model.40,65 All of these regression analyses can aid in
identifying the factors output by PMF. In particular, re-
gressing of contributions onto gaseous species can assist
in understanding how sources of PM also contribute to
the ambient concentrations of gases.

Figure 1. General work flow for PMF analyses of ambient PM
species data.
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CONCLUSIONS
Procedures used to identify and apportion sources of
ambient PM by fitting a bilinear model (eq 1) to PM
species measurements using the PMF algorithm have
been reviewed. A procedural diagram amalgamated
from this review of PMF applications is shown in Figure
1. The arrows in Figure 1 indicate that the PMF user is
encouraged to return to earlier steps if the PMF solution
does not fit the data well or if the factors and contribu-
tions cannot be adequately physically interpreted. We
recommend following this general work flow and doc-
umenting all of the procedural details used in future
PMF applications as outlined in Table 2. Thorough doc-
umentation will especially aid in understanding the
challenging step of associating PMF factors with sources
of ambient PM, which is largely subjective and some-
times criticized because of undocumented or inconsis-
tent use of species in associating factors with sources.
Additionally, if future PMF analyses include calcula-
tions and documentation of uncertainties in the mod-
eling results, then the profiles may be compared to see
if they are within the uncertainty bounds of each other.

This review has also raised a number of questions
about the workings of PMF that warrant further research.
Previous analyses of trace species in environmental sam-
ples have found that different methods for handling data
below DL can strongly influence subsequent statistical
analyses.68,69 Does this effect apply to PMF analyses of
ambient PM species as well? Does duplication of measure-
ments in the data matrix improve or degrade PMF solu-
tions, or is the effect negligible? What is the optimum
method of apportioning total PM mass to the different
factors resolved by PMF? How do different definitions of
uncertainties (�ij in Table 1), choices of error models, and

values of 	 affect PMF solutions? What method or com-
bination of methods is optimal for rotating PMF solu-
tions? Is it valid to use the F-key to force factor profiles to
resemble emissions speciation profiles? Is G-key useful
for rotating PMF solutions? How can the source identi-
fication process be improved? Do factor profiles from
different studies that are identified as the same source
fall within the limits of uncertainty of each other? Is it
possible to numerically match profiles resolved by PMF
to data in an electronic library of PM source profiles,
such as SPECIATE,67 similar to techniques that are often
used in the field of spectroscopy?70

The overall goal of the recommended documentation
and future research questions is to obtain source appor-
tionment results from PMF that are of known quality.
This, in turn, will allow the community to determine
which procedural steps give rise to the greatest uncer-
tainty in the modeling results and to find ways to reduce
that uncertainty.
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