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1. INTRODUCTION 

 

Subsurface drainage of agricultural land can be done by 

horizontal pipe drainage systems, but when the aquifer is deep 

drainage by wells (vertical drainage) may be a feasible 

alternative because the well spacing can be quite wide achieving 

the same effect on the lowering of the water table. 

 

The law of Darcy (Figure 1) states: 

 

  δJ     Vx 

  -- = - --         (1) 

  δX     Kx 

 

where: 

 J  is the level of the water table at distance X, taken  

    with respect to the level of the impermeable base of 

the  

    aquifer (m) 

 X  is a distance in horizontal direction (m) 

 Vx is the apparent flow velocity at X in horizontal 

    X-direction (m/day) 

 Kx is the horizontal hydraulic conductivity (m/day)  

 δX is a small increment of distance X (m) 

 δJ is the increment of level J over increment δX (m) 

 δJ/δX is the gradient of the water table at X (m/m) 
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Figure 1. Cross-section over a well 

 

 

 

 

 

  
 

Figure 2. Square grid of wells with well spacing L and  

          radius of influence Z 
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The velocity of flow to a fully penetrating well, i.e. a well 

reaching the bottom of the aquifer, in a homogeneous aquifer can 

be found from the water balance (Figure 2) as: 

 

       π(Z
2
-X

2
)R 

  Vx = ---------        (2) 

         2πX.J 

where: 

 

R  is the long term average (quasi steady) recharge by  

    downward percolating water stemming from rain or  

    irrigation water equalling the long term pumping rate  

    from the well (m/day) 

 Z  the radius of a circle around the well to where the  

    influence of the well extends, the zone of influence 

    (m) 

 

The factor π(Z
2
-X

2
)R represents the amount of water (m

3
/day) 

stemming from the surface of a segment between the circles with 

radius Z and X, and the factor 2πX.J is the cylindrical cross-

section (m
2
/day) of flow at distance X. 

 When the wells are arranged in a square pattern we may 

equate the surface area under the radius of influence of the 

well with the surface area geometrically associated with a well: 

 

 πZ
2
 = L

2
 so that Z = 0.56 L and L = 1.77 Z  (3) 

 

For a regular triangular pattern we find L = 1.73 Z and L = 0.58 

Z. The difference is relatively small. 

 When the well pattern is somewhat irregular we may use: 

L=0.57√(A/N), where A is the area served by N wells, and   

Z={√(A/N)}/1.75 using factors intermediate between those found 

before.  

 

2. SOLUTIONS 

 

The previous equations can be solved analytically (Boehmer and 

Boonstra 1994, Oosterbaan 1986) for fully penetrating wells in a 

uniform aquifer as in Figure 1: 

 

            Π  

 Q = -------- {2Kb(D2-Dw)(Jz-Jr) + Ka(Jz-Jr)
2
}   (4) 

     ln(Z/Wr)  

 

where: Q is the well discharge (m3/day), JZ and Jr are the 
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heights of the water table above the impermeable layer at 

distance Z (the sphere of influence of the well) and at Wr (i.e. 

at the circumference of the well, Wr being the well radius), Kb 

and Ka are the hydraulic conductivity below and above the water 

level in the well respectively. The distance Z may be taken as 

L/√π, where L is the well spacing in an equidistant square 

network (see Fig. 3). The symbols D2 and Dw are also shown in 

Fig.3. 

  

However, for partially penetrating wells and heterogeneous 

aquifers an analytical solution is difficult to find, the more 

so if one wishes to know the shape of the water table from the 

well to the end of the zone of influence. The model WellDrain on 

website www.waterlog.info/weldrain.htm therefore uses a 

numerical solution using the following input data: 

 

 

 

 

 
 

Figure 3. Illustration of input data for the WellDrain program 
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Long term average recharge or discharge    R    (m/day) 

Bottom depth of 1st layer below the 

  soil surface (s.s.)                      D1       (m)  

Bottom depth of 2nd layer below s.s.       D2       (m)  

Depth water level in well below s.s.       Dw       (m)  

  (long term average) 

Depth of well bottom below s.s             Db       (m)  

Entrance resistance at the well            E    (day/m)  

Diameter of well screen                    W        (m)  

Permeability above water level in well     Ka   (m/day)  

Horizontal permeability, 1st soil layer    Kb1  (m/day)  

Vertical permeability, 1st soil layer      Kv1  (m/day)  

Horizontal permeability, 2nd soil layer    Kb2  (m/day)  

Vertical permeability, 2nd soil layer      Kv2  (m/day)  

Depth water table midway between wells     Dm       (m)  

  (long term average) 

Spacing between wells                        L        (m) 

 

See figure 3. 

 

The depth D1 can be greater or smaller than Dw. It can even be 

zero, meaning that one soil layer is not present. Also it can be 

equal to D2 meaning that another soil layer is not present. 

 

 

3. PARTIALLY PENETRATING WELLS 

 

When the wells penetrate only partially into the aquifer (Figure 

4) the flow in the neighbourhood of the well moves radially up 

from the underground. As the flow is also radial in a horizontal 

plane, it becomes spherical flow (Oosterbaan 1986). 

 

To account for the radially upward moving water, the horizontal 

impermeable is partly replaced by an imaginary impermeable layer 

sloping downward from the well bottom to the real impermeable 

layer with a slope at an angle whose tangent equal to ½π, much 

in the same way as described by Oosterbaan (2002)using the 

Hooghoudt principle. 
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Figure 4. Illustrating the imaginary impermeable layer in the 

presence of partially penetrating wells. 

  

 

4. TRANSMISSIVITY 

 

Transmissivity is defined as the product of horizontal hydraulic 

conductivity and thickness of the saturated soil layer. Since 

the water table gets higher away from the drain, the 

transmissivity increases away from the drain. When partially 

penetrating wells are present there is a further increase in 

transmissivity because the imaginary impermeable layer descends 

away from the drain. Figure 5 gives an example. 

 



 8 

   
Figure 5. The transmissity in the cross-section shown equals  

      T = H.Ka + J1.Kb1 + Ji.Kb2  
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6. ENTRANCE RESISTANCE 

 

When entrance resistance is present, the water level just 

outside the well is higher than inside by a difference Fe (m), 

the entrance head (Figure 6).  

 Entrance resistance is defined as E = Fe/Q (day/m), where 

Q is the flow entering the well in m3/day per m length of 

submerged part of the well. Hence Q = πR.Z
2
/(Db-Dw).  

 Therefore Fe = πE.R.Z
2
/(Db-Dw). 

The effect of entrance resistance is somewhat diminished by an 

increased transmissivity. 

 

   
Figure 6. Entrance head due to entrance resistance. 

 

 

 

7. ANISOTROPY 

 

The hydraulic conductivity of the soil may change with depth and 

be different in horizontal and vertical direction. We will dis-

tinguish a horizontal conductivity Ka of the soil above drainage 

level, and a horizontal (Kb) and vertical (Kv) conductivity 

below drainage level. The following principles are only valid 

when Kv>R, otherwise the recharge R percolates downwards only 

partially and the assumed water balance is not applicable. 

 The effect of the conductivity Kv is taken into account by 
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introducing the anisotropy ratio A=(Kb/Kv), as described for 

example by Boumans (1979). The conductivity Kb is divided by 

this ratio, yielding a transformed conductivity: Kt = Kb/A = 

(Kb.Kv). As normally Kv<Kb, we find A>1 and Kt<Kb. On the other 

hand, the thickness J of the aquifer below the bottom level of 

the well is multiplied with the ratio. Hence the transformed 

depth is: Jt=A.J  

 When A>1, the zone of upward radial flow increases. The 

effect of the transformation is that the extended area of upward 

radial flow and the reduced conductivity Kt increase the 

resistance to the flow and enlarges the height of the water 

table. In extreme cases the extended area reaches beyond the 

zone of influence, which means that the lower part of the 

aquifer does not contribute to the flow of water. 

 

 

8. LAYERED (AN)ISOTROPIC SOILS 

 

The soil may consist of distinct (an)isotropic layers. In the 

following model, three layers are discerned. 

 The first layer reaches to a depth Wd below the soil 

surface, corresponding to the water level in the well, and it 

has an isotropic hydraulic conductivity Ka. The layer represents 

the soil conditions above drainage level. 

 The second layer has a reaches to depth D1 below the soil 

surface (D1>Dw). It has horizontal and vertical hydraulic 

conductivities Kb1 and Kv1 respectively with an anisotropy ratio 

A1=(Kb1/Kv1). The transformed conductivity is Kt1 = Kb1/A1. The 

thickness J1 = D1 – Dw is transformed to Jt1 = A1.J1. 

 The third layer rests on the impermeable base at a depth D2 

(D2>D1). It has a thickness J2 = D2 –D1 and horizontal and 

vertical hydraulic conductivities Kb2 and Kv2 respectively with 

an anisotropy ratio A2 = (Kb2/Kv2),. The transformed 

conductivity is Kt2 = Kb2/A2, and the transformed thickness is 

Jt2 = A2.F2 

  

The transmissivity of the aquifer now is: 

 

 T = H.Ka + Jt1.Kt1 + Jt2.Kt2 
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9. RECTANGULAR WELL FIELD 

 

When the wells are placed in a rectangular well field with 

length A and width B (A>L>B), we have: 

 

 L = √ A.B  

 

The height HA of the water table midway between the distance A 

is somewhat larger than the height HL midway between the 

distance L. On the other hand, the height HB of the water table 

midway between the distance B is somewhat smaller than the 

height HL midway between the distance.  

 

The difference ∆HA=HA-HL is: 

 

 ∆HA = B(A-L)R/TA 

where 

 TA = (HL+0.5∆HA)Ka + Jt1.Kt1 + Jt2.Kt2 

 

The difference ∆HB=HL-HB is: 

 

 ∆HB = A(L-B)R/TB 

where 

 TB = (HL-0.5∆HB)Ka + Jt1.Kt1 + Jt2.Kt2 

 

Hence, the depth of the water table DA midway between the larger 

distance A is somewhat smaller than the depth Dm midway between 

the distance L, and the depth of the water table DB midway 

between the shorter distance B is somewhat smaller than the 

depth Dm midway between the distance L. 

 

The calculation of ∆HA and ∆HB requires a procedure of trial and 

error because these values are needed in advance for the 

calculation of TA and TB. When the aquifer is thick, the 

transmissivities TA and TB can be approximated simply by 

 

 TA = TB = HL.Ka + Jt1.Kt1 + Jt2.Kt2 

 

without committing a large error. 
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