
 1

The Common Land Model (CoLM)

Technical Guide

Duoying Ji, Yongjiu Dai

College of Global Change and Earth System Science

Beijing Normal University

Beijing 100875

China

E-mail:

duoyingji@bnu.edu.cn

yongjiudai@bnu.edu.cn

Oct 28, 2010

mailto:duoyingji@bnu.edu.cn
file:///C:\Documents%20and%20Settings\Administrator\My%20Documents\yongjiudai@bnu.edu.cn

 2

 3

Contents

1. Introduction

2. Creating and Running the Executable

2.1 Specification of script environment variables and header file

2.2 Surface data making

2.3 Initial data making

2.4 Time-loop calculation

3. CoLM Surface Dataset

4. CoLM Atmospheric Forcing Dataset

 4.1 GSWP2 forcing dataset

4.2 PRINCETON forcing dataset

4.3 Temporal interpolation of the forcing data

5. CoLM Model Structure and Parallel Implementation

 5.1 CoLM Model Structure

 5.2 CoLM MPI Parallel Design

 5.3 CoLM MPI Parallel Implementation

 5.4 CoLM Source Code and Subroutines Outline

6. CoLM Parameter and Variables

6.1 Model Parameters

6.2 Time invariant model variables

6.3 TUNABLE constants

6.4 Time-varying state variables

6.5 Forcing

6.6 Fluxes

7. Examples of offline simulation

 7.1 Single Point Offline Experiment

 7.2 Global Offline Experiment with GSWP2 Dataset

8. Coupling of CoLM with CSM/ESM

 8.1 General framework of CSM/ESM

 8.2 Coupling with GCCESM

 4

Table 1: Model directory structure

Table 2: define.h CPP tokens

Table 3: Namelist variables for initial data making

Table 4: Namelist variables for Time-loop calculation

Table 5: The list of raw data available

Table 6: Description of 24-category (USGS) vegetation categories

Table 7: Description of 17-category soil categories

Table 8: The relative amounts of sand, soil, and clay

Table 9: netCDF File Information of the Processed Atmospheric Forcing Data

Table 10: Source code and Subroutines Outline

Table 11: Dimension of model array

Table 12: Control variables to determine updating on time steps

Table 13: Model time invariant variables

Table 14: Model TUNABLE constants

Table 15: Run calendar

Table 16: Time-varying Variables for restart run

Table 17: Atmospheric Forcing

Table 18: Model output in xy Grid Form

Table 19: Interfaces added to couple with GCCESM

Table 20: Fields exchanged between CoLM and coupler in GCCESM

Figure 1: Flow chart of the surface data making

Figure 2: Flow chart of the initial data making

Figure 3: Flow chart of the time-looping calculation

Figure 4: Diagram of the domain partition at surface data making

Figure 5: Diagram of the domain partition at time-looping calculation

Figure 6: Diagram of the patches and grids mapping relationship

Figure 7: General framework of CSM/ESM

Figure 8: The framework of GCCESM

Figure 9: Flow Chart of the Time-looping Calculation in Coupled Mode

 5

1. Introduction

This user’s guide provide the user with the coding implementation, and operating

instructions for the Common Land Model (CoLM) which is the land surface

parameterization used in offline mode or with the global climate models and regional

climate models.

The development of the Common Land Model (hereafter we call CLM initial

version) can be described as the work of a community effort. Initial software

specifications and development focused on evaluating the best features of existing land

models. The model performance has been validated in very extensive field data included

sites adopted by the Project for Intercomparison of Land-surface Parameterization

Schemes (Cabauw, Valdai, Red-Arkansas river basin) and others [FIFE, BOREAS,

HAPEX-MOBILHY, ABRACOS, Sonoran Desert, GSWP, LDAS]. The model has been

coupled with the NCAR Community Climate Model (CCM3). Documentation for the

CLM initial version is provided by Dai et al. (2001) while the coupling with CCM3 is

described in Zeng et al. (2002). The model was introduced to the modeling community in

Dai et al. (2003).

The CLM initial version was adopted as the Community Land Model (CLM2.0)

for use with the Community Atmosphere Model (CAM2.0) and version 2 of the

Community Climate System Model (CCSM2.0). The current version of Community Land

Model, CLM3.0, was released in June 2004 as part of the CCSM3.0 release

(http://www.ccsm.ucar.edu/models/ccsm3.0/clm3/). The Community Land Model

(CLM3.0) is radically different from CLM initial version, particularly from a software

engineering perspective, and the great advancements in the areas of carbon cycling,

vegetation dynamics, and river routing. The major differences between CLM 2.0 and

CLM initial version are: 1) the biome-type land cover classification scheme was replaced

with a plant functional type (PFT) representation with the specification of PFTs and leaf

area index from satellite data; 2) the parameterizations for vegetation albedo and vertical

burying of vegetation by snow; 3) canopy scaling, leaf physiology, and soil water

limitations on photosynthesis to resolve deficiencies indicated by the coupling to a

dynamic vegetation model; 4) vertical heterogeneity in soil texture was implemented to

improve coupling with a dust emission model; 5) a river routing model was incorporated

to improve the fresh water balance over oceans; 6) numerous modest changes were made

to the parameterizations to conform to the strict energy and water balance requirements of

CCSM; 7) Further substantial software development was also required to meet coding

standards. Besides the changes from a software engineering perspective, the differences

between CLM3.0 and CLM2.0 are: 1) several improvements to biogeophysical

parameterizations to correct deficiencies; 2) stability terms were added to the formulation

http://www.ccsm.ucar.edu/models/ccsm3.0/clm3/

 6

for 2-m air temperature to correct this; 3) the equation was modified to correct a

discontinuity in the equation that relates the bulk density of newly fallen snow to

atmospheric temperature; 4) a new formulation was implemented that provides for

variable aerodynamic resistance with canopy density; 5) the vertical distribution of lake

layers was modified to allow for more accurate computation of ground heat flux; 6) a fix

was implemented for negative round-off level soil ice caused by sublimation; 7) a fix was

implemented to correct roughness lengths for non-vegetated areas. Documentation for the

Community Land Model (CLM3.0) was provided by Oleson et al. (2004). The

simulations of CLM2.0 coupling with the Community Climate are described in Bonan et

al. (2002). The simulations of CLM3.0 with the Community Climate System Model

(CCSM3.0) are summarized in the Special Issue of Journal of Climate by Dickinson et al.

(2005), Bonan and S. Levis (2005).

Concurrent with the development of the Community Land Model, the CLM initial

version was undergoing further development at Georgia Institute of Technology and

Beijing Normal University in leaf temperature, photosynthesis and stomatal calculation.

Big-leaf treatment by CLM initial version and CLM3.0 that treat a canopy as a single leaf

tend to overestimate fluxes of CO2 and water vapor. Models that differentiate between

sunlit and shaded leaves largely overcome these problems. A one-layered, two-big-leaf

submodel for photosynthesis, stomatal conductance, leaf temperature, and energy fluxes

was necessitated to the CLM initial version, that is not in the CLM3.0. It includes 1) an

improved two stream approximation model of radiation transfer of the canopy, with

attention to singularities in its solution and with separate integrations of radiation

absorption by sunlit and shaded fractions of canopy; 2) a photosynthesis–stomatal

conductance model for sunlit and shaded leaves separately, and for the simultaneous

transfers of CO2 and water vapor into and out of the leaf—leaf physiological properties

(i.e., leaf nitrogen concentration, maximum potential electron transport rate, and hence

photosynthetic capacity) vary throughout the plant canopy in response to the radiation–

weight time-mean profile of photosynthetically active radiation (PAR), and the soil water

limitation is applied to both maximum rates of leaf carbon uptake by Rubisco and

electron transport, and the model scales up from leaf to canopy separately for all sunlit

and shaded leaves; 3) a well-built quasi-Newton–Raphson method for simultaneous

solution of temperatures of the sunlit and shaded leaves. For avoiding confusion with the

Community Land Model (CLM2.0, CLM3.0 versions), we name this improved version of

the Common Land Model as CoLM.

This was same as model now supported at NCAR. NCAR made extensive

modifications mostly to make more compatible with NCAR CCM but some for better

back compatibility with previous work with NCAR LSM. For purpose of using in a

variety of other GCMs and mesoscale models, this adds a layer of complexity that may be

unnecessary. Thus we have continued testing further developments with CLM initial

 7

version. Some changes suggested by Land Model working groups of CCSM are also

implemented, such as, stability terms to the formulation for 2-m air temperature, a new

formulation for variable aerodynamic resistance with canopy density. CoLM is radically

different from either CLM initial version or CLM2.0 or CLM3.0, the differences could be

summarized as follows,

1) Two big leaf model for leaf temperatures, photosynthesis-stomatal resistance;

2) Two-stream approximation for canopy albedoes calculation with the solution for

singularity point, and the calculations for radiation for the separated canopy

(sunlit and shaded);

3) New numerical scheme of iteration for leaf temperatures calculation; New

treatment for canopy interception with the consideration of the fraction of

convection and large-scale precipitation;

5) Soil thermal and hydrological processes with the consideration of the depth to

bedrock;

6) Surface runoff and sub-surface runoff;

7) Rooting fraction and the water stress on transpiration;

8) Use a grass tile 2m height air temperature in place of an area average for matching

the routine meteorological observation;

9) Perfect energy and water balance within every time-step;

10) A slab ocean-sea ice model;

11) Totally CoLM coding structure.

The development of CoLM is trying to provide a version for public use and

further development, and share the improvement contributed by many groups.

The source code and datasets required to run the CoLM in offline mode can be

obtained via the web from:

http://globalchange.bnu.edu.cn/research/models

The CoLM distribution consists of three tar files:

CoLM_src.tar.gz

CoLM_src_mpi.tar.gz

CoLM_dat.tar.gz.

The file CoLM_src.tar.gz and CoLM_src_mpi.tar.gz contain code, scripts, the file

CoLM_src.tar is the serial version of the CoLM, and the file CoLM_src_mpi.tar.gz is the

parallel version of the CoLM, the file CoLM_dat.tar contains raw data used to make the

model surface data. The Table 1 lists the directory structure of the parallel version model.

Table 1: Model Directory Structure

http://globalchange.bnu.edu.cn/research/models

 8

Directory Name Description

CoLM/rawdata/ "Raw" (highest provided resolution) datasets

used by CoLM to generate surface datasets at

model resolution. We are currently providing 5

surface datasets with resolution 30 arc second:

DEM-USGS.30s

LWMASK-USGS.30s (not used)

SOILCAT.30s

SOILCATB.30s

VEG-USGS.30s

BEDROCKDEPTH (not available)

LAI (not available)

CoLM/data/ Atmospheric forcing variables suitable for

running the model in offline mode

CoLM/mksrfdata/ Routines for generating surface datasets

CoLM/mkinidata/ Routines for generating initial datasets

CoLM/main/ Routines for executing the time-loop calculation

of soil temperatures, water contents and surface

fluxes

CoLM/run/ Script to build and execute the model

CoLM/graph/ GrADs & NCL files for display the history files

CoLM/interp/ Temporal interpolation routines used for GSWP2

& PRINCETON atmospheric forcing dataset

CoLM/tools/ Useful programs related with model running

The scientific description of CoLM is given in

[1]. Dai, Y., R.E. Dickinson, and Y.-P. Wang, 2004: A two-big-leaf model for canopy

temperature, photosynthesis and stomatal conductance. Journal of Climate, 17: 2281-

2299.

[2]. Oleson K. W., Y. Dai, G. Bonan, M. Bosilovich, R. E. Dickinson, P. Dirmeyer, F.

Hoffman, P. Houser, S. Levis, G. Niu, P. Thornton, M. Vertenstein, Z.-L. Yang, X.

Zeng, 2004: Technical Description of the Community Land Model (CLM).

NCAR/TN-461+STR.

[3]. Dai, Y., X. Zeng, R. E. Dickinson, I. Baker, G. Bonan, M. Bosilovich, S. Denning, P.

Dirmeyer, P. Houser, G. Niu, K. Oleson, A. Schlosser, and Z.-L. Yang, 2003: The

Common Land Model (CLM). Bull. of Amer. Meter. Soc., 84: 1013-1023.

 9

[4]. Dai, Y., X. Zeng, and R.E. Dickinson, 2002: The Common Land Model:

Documentation and User’s Guide (http://climate.eas.gatech.edu/dickinson/).

We value the responses and experiences of our collaborators in using CoLM and

encourage their feedback on problems in the current model formulation and the coding,

as well as insight and suggestions for future model refinement and enhancement. It would

be particularly helpful if users would communicate such feedback informally and where

possible share with us documented model applications including manuscripts, papers,

procedures, or individual model development.

http://climate.eas.gatech.edu/dickinson/

 10

2. Creating and Running the Executable

The CoLM model can run as a stand alone executable where atmospheric forcing

data is periodically read in. It can also be run as part of the atmosphere model where

communication between the atmospheric and land models occurs via subroutine calls or

the special coupler. In this technical guide, we’ll focus on the parallel version CoLM,

most of the scripts and setting of the serial version CoLM are similar to the parallel

version, and even more simple.

offline mode

In order to build and run the CoLM on offline mode, two sample scripts:

jobclm.csh, jobclm_single.csh, and the corresponding Makefile files are provided in run

and other source code directories respectively.

The scripts, jobclm.csh and jobclm_single.csh, create a model executable,

determine the necessary input datasets, construct the input model namelist. Users must

edit these scripts appropriately in order to build and run the executable for their particular

requirements and in their particular environment. These scripts are provided only as an

example to aid the novice user in getting the CoLM up and running as quickly as possible.

The script jobclm_single.csh is used to do a single-point offline simulation experiment,

can be run with minimal user modification, assuming the user resets several environment

variables at the top of the script. In particular, the user must set ROOTDIR to point to the

full disk pathname of the model root directory. And the jobclm.csh is used to do a global

or regional offline simulation experiment, usually should be modified heavily to fulfill

different requirements. The following part we’ll explain the jobclm.csh in detail.

The script jobclm.csh can be divided into five sections:

1) Specification of script environment variables, creating header file define.h;

2) Compiling the surface data making, initial data making, time-loop calculation

programs respectively.

3) Surface data making, including input namelist creating;

4) Initial data making: including input namelist creating;

5) Time-loop calculation: including input namelist creating.

2.1 Specification of script environment variables

The user will generally not need to modify the section of jobclm.csh, except to:

1) set the model domain edges and the basic computer architecture,

 11

2) set the model path directory,

3) create the subdirectory for output, and

4) create the header file $CLM_INCDIR/define.h.

BOX 1: EXAMPLE FOR SPECIFICATION OF SCRIPT ENVIRONMENT

VARIABLES

set the basic computer architecture for the model running

setenv ARCH intel

set the model domain for north, east, south, west edges

setenv EDGE_N 90.

setenv EDGE_E 180.

setenv EDGE_S -90.

setenv EDGE_W -180.

set the number of grids of the CoLM and the forcing dataset at

longitude and latitude directions

setenv NLON_CLM 360

setenv NLAT_CLM 180

setenv NLON_MET 360

setenv NLAT_MET 180

set the number of processes used to parallel computing, MPI

related.

setenv TASKS 24

The user has to modify the ROOTDIR to his/her root directory,

for example, /people.

setenv ROOTDIR /people/$LOGNAME

1) set clm include directory root

setenv CLM_INCDIR $ROOTDIR/CoLM/include

2) set clm raw land data directory root

setenv CLM_RAWDIR $ROOTDIR/CoLM/rawdata

3) set clm surface data directory root

setenv CLM_SRFDIR $ROOTDIR/CoLM/mksrfdata

4) set clm input data directory root

setenv CLM_DATADIR $ROOTDIR/CoLM/data

5) set clm initial directory root

setenv CLM_INIDIR $ROOTDIR/CoLM/mkinidata

6) set clm source directory root

setenv CLM_SRCDIR $ROOTDIR/CoLM/main

 12

7) set executable directory

setenv CLM_EXEDIR $ROOTDIR/CoLM/run

8) create output directory

setenv CLM_OUTDIR $ROOTDIR/CoLM/output

mkdir -p $CLM_OUTDIR >/dev/null

#--

build define.h in ./include directory

#--

\cat >! .tmp << EOF

#undef COUP_CSM

#undef RDGRID

#undef SOILINI

#define offline

#undef BATS

#undef SIB2

#undef IGBP

#define USGS

#define EcoDynamics

#define LANDONLY

#undef LAND_SEA

#undef SINGLE_POINT

#undef MAPMASK

#define NCDATA

#define PRINCETON

#undef GSWP2

#undef DOWNSCALING

#define WR_MONTHLY

EOF

if ($TASKS > 1) then

 \cat >> .tmp << EOF

#define SPMD

EOF

Endif

\cmp -s .tmp $CLM_INCDIR/define.h || mv -f .tmp

$CLM_INCDIR/define.h

The ARCH variable is used to set the architecture of the model running, and in the

following section of the jobclm.csh, the make command will use the ARCH variable to

invoke different Makefile to compile the model. The EDGE_N, EDGE_E, EDGE_S,

EDGE_W four variables are used to locate the model domain edges, especially on the

model surface data making. The number of model grids at latitude or longitude direction

is set by the NLAT_CLM and NLON_CLM, these also are used for surface data making.

The number of forcing dataset grids at latitude or longitude direction is set by the

NLAT_MET and NLON_MET, these help do some simple forcing data downscaling

when the model grids not exactly match the forcing dataset grids. The number of

 13

processors involved in the parallel computing is set by the TASKS environment variables,

if TASKS is great than one, the SPMD cpp token will be specified in define.h

automatically, and the MPI parallel function will be build into the model, users could

modify this logic according to your own requirements.

The file define.h contains model-dependent C-language cpp tokens. C-

preprocessor directives of the form #include, #if defined, etc., are used in the model

source code to enhance code portability and allow for the implementation of distinct

blocks of functionality (such as incorporation of different modes) within a single file.

Header file, define.h, is included with #include statements within the source code. When

make command is invoked, the C preprocessor includes or excludes blocks of code

depending on which cpp tokens have been defined in define.h.

Table 2: define.h CPP tokens

define.h cpp token Description

OFFLINE If defined, offline mode is invoked

RDGRID If defined, the latitude and longitude of model grids

are provided by input data

USGS If defined, USGS 24 categories land cover legend are

used

IGBP If defined, IGBP 17 categories land cover legend are

used

SiB2 If defined, SiB2 11 categories land cover legend are

used

BATS If defined, BATS 19 categories land cover legend are

used

EcoDynamics If defined, dynamic vegetation model is activated

LANDONLY If defined, only land grid are activated

LAND_SEA If defined, land and sea grids are activated

MAPMASK If defined, users should supply the base map file to

locate the specific region

NCDATA If defined, netCDF format atmospheric forcing

dataset being read, currently only supporting GSWP2

& PRINCETON datasets.

PRINCETON If defined, the PRINCETON dataset being used.

Depending on the NCDATA token.

GSWP2 If defiend, the GSWP2 dataset being used. Depending

on the NCDATA token.

DOWNSCALING If defined, the simple downscaling method used to re-

grid the forcing data, usually used at high resolution

 14

simulation experiments

SPMD If defined, the MPI parallel function being build into

the model, this token is automatically set by the

jobclm.csh according to the TASKS environmental

variable

WR_HOURLY If defined, history file is write at every time step

WR_DAILY If defined, history file is write in daily average

WR_MONTHLY If defined, history file is write in monthly average

2.2 Compiling the surface data making, initial data making, time-loop calculation

programs

BOX 2: EXAMPLE FOR COMPILING THE MODEL

echo 'Compiling mksrfdata...'

cd $CLM_SRFDIR

make -f Makefile.${ARCH} clean

make -f Makefile.${ARCH} >>& $CLM_EXEDIR/compile.log.clm ||

exit 5

cp -f $CLM_SRFDIR/srf.x $CLM_EXEDIR/srf.x

echo 'Compiling mkinidata...'

cd $CLM_INIDIR

make -f Makefile.${ARCH} clean

make -f Makefile.${ARCH} >>& $CLM_EXEDIR/compile.log.clm ||

exit 5

cp -f $CLM_INIDIR/initial.x $CLM_EXEDIR/initial.x

echo 'Compiling main...'

cd $CLM_SRCDIR

make -f Makefile.${ARCH} clean

make -f Makefile.${ARCH} >>& $CLM_EXEDIR/compile.log.clm ||

exit 5

cp -f $CLM_SRCDIR/clm.x $CLM_EXEDIR/clm.x

In each source code directory of the model, two Makfiles exist: one is

Makefile.intel, another one is Makefile.ibm. The make command uses the ARCH

environment variable to select the right Makefile to compile the model, including the

 15

surface making program, initial data making program and the time-loop main program.

After the successful compiling procedure, three executable files named srf.x, initial.x and

clm.x should occur in the $CLM_EXEDIR directory. If some accident happened, users

could refer to the compile.log.clm file at the $CLM_EXEDIR directory to figure out the

problem.

2.3 Surface data making: input namelist creating and executing

In this part, the srfdat.stdin namelist being firstly created, this namelist is used to

direct the surface making program how to produce the surface data. The model surface

data ―fsurdat‖ is created by using the high resolution raw surface dataset, i.e., fgridname,

fmaskname, flandname, fsolaname, fsolbname. If RDGRID cpp token defined, the

fgridname should point to the file which contains the model grid information, including

the latitude & longitude of all grids center, else the fgridname leaves blank. The

fmaskname points to the land and ocean mask file, fsolaname points to the upper layer

soil category dataset (0-30cm), fsolbname points to the deeper layer soil category dataset

(30-100cm). Currently all these dataset comes from USGS. The flandname points to the

land cover category classification dataset, currently the CoLM support USGS, IGBP,

SiB2, BATS four land category legends, and each one could be set by modifying the

define.h header file. In the default CoLM_dat.tar.gz dataset, we only provide the USGS

land cover category dataset, users could download other land cover category datasets

from http://edcsns17.cr.usgs.gov/glcc or contact us.

Users want to simulate the limited region (domain) which is not a regular shape,

e.g. a city or state, could use the file fmapmask to specify a base map file, this file

should be a zero/one land mask file, the value one should fill the region interested. And in

the surface making process, the program would care about this, and drop the non-

interested area. The fmapmask file should be at the same resolution as flandname,

fsolaname,fsolbname and etc. A similar file is fmetmask, which is used to filter some

points without atmospheric forcing dataset, it’s also a zero/one land mask file, but it has

the resolution of the model, the points without forcing dataset are also dropped.

A regular grid surface dataset can be generated for a single gridcell or for

gridcells comprising a regional or global domain, lon_points=1, lat_points=1 for a single

gridcell simulation or lon_points =nx, lat_points =ny for a nx  ny model grids simulation.

The model resolution are defined by model grid (lon_points, lat_points) and the domain

edges, i.e.,

edgen: northern edge of model domain (degrees north)

edges: southern edge of model domain(degrees south)

edgew: western edge of model domain (degrees west)

edgee: eastern edge of model domain (degrees east)

http://edcsns17.cr.usgs.gov/glcc

 16

The surface making program is paralleled using MPI, so developers want to add

new function should take care of it.

BOX 3: EXAMPLE FOR SURFACE DATA MAKING

cd $CLM_EXEDIR

Create an input parameter namelist file for srf.x

\cat >! $CLM_EXEDIR/srfdat.stdin << EOF

&mksrfexp

fmetmask = '$CLM_DATADIR/gswp_mask'

fmapmask = '/c2/data/CN_basemap/chinamap'

fgridname = ''

fdemname = '$CLM_RAWDIR/DEM-USGS.30s'

fmaskname = '$CLM_RAWDIR/LWMASK-USGS.30s'

flandname = '$CLM_RAWDIR/VEG-USGS.30s'

fsolaname = '$CLM_RAWDIR/SOILCAT.30s'

fsolbname = '$CLM_RAWDIR/SOILCATB.30s'

fsurdat = '$CLM_DATADIR/srfdata.1deg'

lon_points = $NLON_CLM

lat_points = $NLAT_CLM

edgen = $EDGE_N

edgee = $EDGE_E

edges = $EDGE_S

edgew = $EDGE_W

nlon_metdat = $NLON_MET

nlat_metdat = $NLAT_MET

/

EOF

echo 'Executing CLM Making Surface Data'

if($TASKS > 1)then

 mpirun -prefix "[%g] " -np $TASKS $CLM_EXEDIR/srf.x <

$CLM_EXEDIR/srfdat.stdin >& $CLM_EXEDIR/clm.log.srf

|| exit 5

else

 $CLM_EXEDIR/srf.x < $CLM_EXEDIR/srfdat.stdin >&

$CLM_EXEDIR/clm.log.srf || exit 5

endif

echo 'CLM Making Surface Data Completed'

2.4 Initial data making: input namelist creating and executing

 17

Upon successful completion of the surface data making in model grid and patches,

surface data file has been generated in CLM_DATADIR. This section will make the

model time-constant variables and time-varying variables on the model grids and patches.

Table 3: Namelist Variables for Initial data making

Name

Description Type Notes

site case name character

greenwich true: greenwich time, false: local time logical required

start_yr starting date for run in year integer required

start_jday starting date for run in julian day integer required

start_sec starting seconds of the day for run in seconds integer required

fsurdat full pathname of surface dataset

(for example, '$CLM_DATADIR/srfdata.valdai')

character required

flaidat full pathname of the leaf and stem area index,

dataset

character

fmetdat full pathname of the meteorological data

(for example,

'$CLM_DATADIR/VAL.DAT.CTRL.INT')

character required

fhistTimeConst full pathname of time-invariant dataset

(for example,

'$CLM_OUTDIR/VALDAI-rstTimeConst')

character required

fhistTimeVar full pathname of time-varying dataset

(for example,

'$CLM_OUTDIR/VALDAI-rstTimeVar')

character required

foutdat full pathname of output dataset

(for example, '$CLM_OUTDIR/VALDAI')

character required

finfolist full pathname of run information

(for example, '$CLM_EXEDIR/clmini.infolist')

character required

lon_points number of longitude points on model grid integer required

lat_points number of latitude points on model grid integer required

deltim time step of the run in second real required

mstep total model step for the run integer required

BOX 4: EXAMPLE FOR INITIAL DATA MAKING

Create an input parameter namelist file for initial.x

\cat >! $CLM_EXEDIR/inidat.stdin << EOF

&clminiexp

site = 'GLOBAL'

greenwich = .true.

 18

start_yr = 1948

start_jday = 1

start_sec = 1800

fsurdat = '$CLM_DATADIR/srfdata.1deg'

flaidat = ' '

fsoildat = '$CLM_DATADIR/soilini'

fmetdat = '/disk2/jidy/princeton_30min'

fhistTimeConst = '$CLM_OUTDIR/GLOBAL-rstTimeConst'

fhistTimeVar = '$CLM_OUTDIR/GLOBAL-rstTimeVar'

foutdat = '$CLM_OUTDIR/GLOBAL'

finfolist = '$CLM_EXEDIR/clmini.infolist'

lon_points = $NLON_CLM

lat_points = $NLAT_CLM

nlon_metdat = $NLON_MET

nlat_metdat = $NLAT_MET

deltim = 1800

mstep = 931104

/

EOF

echo 'Executing CLM Initialization'

$CLM_EXEDIR/initial.x <$CLM_EXEDIR/inidat.stdin >&

$CLM_EXEDIR/clm.log.initial || exit 5

echo 'CLM Initialization Completed'

2.5 Time-loop calculation: input namelist creating and executing

Upon successful completion of the surface data and initial data, files for the time-

constant variables, time-varying variables, and the namelist have been generated in

'$CLM_OUTDIR/VALDAI-rstTimeConst', '$CLM_OUTDIR/VALDAI-rstTimeVar', and the

'$CLM_EXEDIR/clmini.infolist'. These include surface data, initialization files as well as

the namalist file for the model time-loop execution. The variables in the namelist file

clmini.infolist have been specified as Table 4:

Table 4: Namelist Variables for Time-loop Calculation

Name

Description Type

site case name character

flaidat full pathname of the leaf and stem area index,

dataset

character

fmetdat full pathname of the meteorological data

(for example,

character

 19

'$CLM_DATADIR/VAL.DAT.CTRL.INT')
fhistTimeConst full pathname of time-invariant dataset

(for example,

'$CLM_OUTDIR/VALDAI-rstTimeConst')

character

fhistTimeVar full pathname of time-varying dataset

(for example,

'$CLM_OUTDIR/VALDAI-rstTimeVar')

character

foutdat full pathname of output dataset

(for example, '$CLM_OUTDIR/VALDAI')

character

lhistTimeConst logical unit number of restart time-invariant file integer

lhistTimeVar logical unit number of restart time-varying file integer

lulai logical unit number of LAI data integer

lumet logical unit number of meteorological forcing integer

luout logical unit number of output integer

lon_points number of longitude points on model grid integer

lat_points number of latitude points on model grid integer

numpatch total number of patches of grids integer

deltim time step of the run in second real

mstep total model step for the run integer

spinup_dy Number of days to spin-up integer

spinup_yr Number of years to spin-up integer

fmetelev Full pathname of the grid elevation of the

atmospheric forcing dataset

character

nlon_metdat Number of grids of atmospheric forcing data at

longitude direction

integer

nlat_metdat Number of grids of atmospheric forcing data at

latitude direction

integer

As the following example showing, the namelist file used to run the time-loop

part of the CoLM model is created by initial data making program, according to the patch

number and others specified information. Before running the CoLM time-loop program, a

flux.stdin namelist being created, this namelist is used to direct the CoLM history output.

At sometimes, especially with high resolution running case, lots of output data is

produced by the model, and most variables in history data are useless, the flux.stdin is

used to handle this situation, we could use it to filter some useless variables, each variable

headed with a ―+‖ sign will be exported as normal, each variable headed with a ―-‖ sign

will be dropped. But when using the graph scripts in graph/ directory, users should

modify them to comport with the flux.stdin.

Also a downs.stdin namelist is created following the flux.stdin, which is used to

do some simple atmospheric forcing data downscaling.

 20

BOX 5: EXAMPLE FOR TIME-LOOP CALCULATION

Create an input parameter namelist file for clm.x

mv -f $CLM_EXEDIR/clmini.infolist $CLM_EXEDIR/timeloop.stdin

Create flux export namelist file for clm.x

Don't change the sequence of the FLUX array elements!!

set FLUX = (+taux +tauy +fsena +lfevpa

+fevpa +fsenl +fevpl +etr

+fseng +fevpg +fgrnd +sabvsun

+sabvsha +sabg +olrg +rnet

+xerr +zerr +rsur +rnof

+assim +respc +tss +wliq

+wice +tg +tlsun +tlsha

+ldew +scv +snowdp +fsno

+sigf +green +lai +sai

+avsdr +avsdf +anidr +anidf

+emis +z0ma +trad +ustar

+tstar +qstar +zol +rib

+fm +fh +fq +tref

+qref +u10m +v10m +f10m

+us +vs +tm +qm

+prc +prl +pbot +frl

+solar)

@ i = 0

set flux_exp = "flux_exp="

foreach str ($FLUX)

 @ i = $i + 1

 if("$str" =~ +*) then

 set flux_exp = "$flux_exp +$i"

 else

 set flux_exp = "$flux_exp -$i"

 endif

end

\cat >! $CLM_EXEDIR/flux.stdin << EOF

&flux_nml

$flux_exp

/

EOF

\cat >! $CLM_EXEDIR/downs.stdin << EOF

&downs_nml

edgen = $EDGE_N

edgee = $EDGE_E

edges = $EDGE_S

 21

edgew = $EDGE_W

/

EOF

echo 'Executing CLM Time-looping'

setenv FORT9 $CLM_EXEDIR/downs.stdin

setenv FORT7 $CLM_EXEDIR/flux.stdin

if($TASKS > 1)then

 mpirun -prefix "[%g] " -np $TASKS $CLM_EXEDIR/clm.x <

$CLM_EXEDIR/timeloop.stdin >&

$CLM_EXEDIR/clm.log.timeloop || exit 5

else

 $CLM_EXEDIR/clm.x < $CLM_EXEDIR/timeloop.stdin >&

$CLM_EXEDIR/clm.log.timeloop || exit 5

endif

echo 'CLM Running Completed'

 22

3. CoLM Surface Dataset

The data available as input to the programs mksrfdat include global terrain

elevation, landuse/vegetation, land-water mask, soil types, in which the raw datasets are

only needed if a surface dataset is to be created at surface data making. All data are

available at 30 arc second resolution (Table 4). The data arrangement and format in the

reformatted data file are as follows,

 Latitude by latitude from north to south in same longitude, the data points are

arranged from west to east, starting from 0 degree longitude (or dateline).

 We use 2-character array to store the elevation, and 1-character array to store all

other data (values < 100).

 All source data files are direct-access, which makes data reading efficient.

 All data are assumed to be valid at the center of the grid box.

Table 5: The list of raw data available

 Resolution Data source Coverage Size(bytes)

Terrain Height 30 sec. (0.925 km) USGS Global 1,866,240,000

Land-Water Mask
#
 30 sec. (0.925 km) USGS Global 933,120,000

24-Category Land Cover
##

30 sec. (0.925 km)

USGS
Global 933,120,000

17-Category Soil
###

 30 sec. (0.925 km) FAO+STATSGO Global 933,120,000

#
 The land-water mask data files are derived from USGS vegetation data files. At each of

lat/lon grid points, there is one number indicating the land (1), water (0), or missing

data (-1) at that point.

##

 The 24 categories are listed. The 30-sec data are represented by one category-ID

number at each of lat/lon grid point..

Table 6: Description of 24-category (USGS) vegetation categories

Land Cover ID Description

1 Urban and Built-Up Land

2 Dryland Cropland and Pasture

3 Irrigated Cropland and Pasture

4 Mixed Dryland/Irrigated Cropland and Pasture

5 Cropland/Grassland Mosaic

6 Cropland/Woodland Mosaic

 23

7 Grassland

8 Shrubland

9 Mixed Shrubland/Grassland

10 Savanna

11 Deciduous Broadleaf Forest

12 Deciduous Needleleaf Forest

13 Evergreen Broadleaf Forest

14 Evergreen Needleleaf Forest

15 Mixed Forest

16 Water Bodies(Including Ocean)

17 Herbaceous Wetland

18 Wooded Wetland

19 Barren or Sparsely Vegetated

20 Herbaceous Tundra

21 Wooded Tundra

22 Mixed Tundra

23 Bare Ground Tundra

24 Snow or Ice

###

 FAO and STATSGO data are merged together. Both top soil layer (0 - 30 cm) and

bottom soil layer (30 - 100 cm) data are provided. The 17 categories are listed. Similar to

the vegetation data, the 30-sec data are represented by one category-ID number at each of

lat/lon grid point.

Table 7: Description of 17-category Soil categories

Soil Type ID Soil Description

1 Sand

2 Loamy Sand

3 Sandy Loam

4 Silt Loam

5 Silt

6 Loam

7 Sandy Clay Loam

8 Silty Clay Loam

9 Clay Loam

10 Sandy Clay

11 Silty Clay

12 Clay

13 Organic Materials

14 Water

 24

15 Bedrock

16 Other

17 No data

Table 8: The relative amounts of sand, soil, and clay

Class No. Soil Texture Class %

Sand

%

Silt

%

Clay

1 Sand 92 5 3

2 Loamy Sand 82 12 6

3 Sandy Loam 58 32 10

4 Silt Loam 17 70 13

5 Silt 10 85 5

6 Loam 43 39 18

7 Sandy Clay Loam 58 15 27

8 Silty Clay Loam 10 56 34

9 Clay Loam 32 34 34

10 Sandy Clay 52 6 42

11 Silt Clay 6 47 47

12 Clay 22 20 58

13 Organic materials 0 0 0

14 Water 0 0 0

15 Bedrock 0 0 0

16 Other 0 0 0

17 No data 0 0 0

 25

4. CoLM Atmospheric Forcing Dataset

 The CoLM needs the atmospheric forcing data when running at offline mode.

Currently the CoLM support ASCII & netCDF format atmospheric forcing dataset. The

NCDATA cpp token is used to distinguish the format being used. When NCDATA being

set, we could use the GSWP2 and PRINCETON atmospheric dataset of netCDF format,

otherwise the ASCII forcing dataset is used. The ASCII data format is relative simple,

each line represents a time record, which contains short-wave solar radiation [W/m
2
],

long-wave radiation [W/m
2
], precipitation rate [mm/s], air temperature [K], wind speed

[m/s], surface air pressure [Pa], specific humidity [kg/kg]. The ASCII format data is easy

to use when doing single-point validating experiments, users could arrange the observed

atmospheric variables according the above requirements and then feed them to the model.

Some special requirements about the ASCII format forcing dataset could be fulfilled by

investigating the source code file GETMET.F90 in main/ directory.

 The following two parts we’ll give some details about how to use the GSWP and

PRINCETON dataset in CoLM, the two dataset are widely used in land surface model

validation and development.

4.1 GSWP2 Forcing Dataset

 The Global Soil Wetness Project (GSWP) is an ongoing environmental modeling

research activity of the Global Land-Atmosphere System Study (GLASS) and the

International Satellite Land-Surface Climatology Project (ISLSCP), both contributing

projects of the Global Energy and Water Cycle Experiment (GEWEX) in the World

Climate Research Program(WCRP). GSWP was charged with producing as a community

effort global estimates of soil moisture, temperature, snow water equivalent, and surface

fluxes by integrating one-way uncoupled land surface schemes (LSSs) using externally

specified surface forcings and standardized soil and vegetation distributions. GSWP-2

produced the best model estimates of the land-surface water and energy cycles over a ten

year period. This project included an evaluation of the uncertainties linked to the LSSs,

their parameters and the forcing variables. One of the main products of the GSWP2 is a

state-of-the-art land surface model forcing dataset, which provides a common platform to

many land surface models to evaluate their performance.

 The GSWP2 dataset contains solar radiation, long-wave radiation, surface air

temperature, surface air specific humidity, surface air pressure, total precipitation rate,

convective precipitation rate, wind speed. Each variable has a data file for each month,

and the date length range from 1982 to 1995, the time interval is 3hours, the spatial

resolution is 1degree. Only the land points have data, so to save the storage space, the

 26

GSWP2 dataset is compressed from 2D xy array into 1D vector array, the ocean grids are

ignored, and all data files are stored in netCDF format to make it more portable among

different computer platforms.

4.2 PRINCETON Forcing Dataset

The PRINCETON dataset is a global, 50-yr, 3-hourly, 1.0° dataset of

meteorological forcing that can be used to drive models of land surface hydrology. The

dataset is constructed by combining a suite of global observation-based datasets with the

National Centers for Environmental Prediction–National Center for Atmospheric

Research (NCEP–NCAR) reanalysis. For the known biases in the reanalysis precipitation

and near-surface meteorology have been shown to exert an erroneous effect on modeled

land surface water and energy budgets, so the PRINCETON dataset corrected these

problems by using observation-based datasets of precipitation, air temperature, and

radiation. This dataset also made corrections to the rain day statistics of the reanalysis

precipitation, which have been found to exhibit a spurious wavelike pattern in high-

latitude wintertime. Wind-induced undercatch of solid precipitation was removed using

the results from the World Meteorological Organization (WMO) Solid Precipitation

Measurement Inter-comparison. The statistical downscaling developed with the Global

Precipitation Climatology Project (GPCP) daily product was used to disaggregate the

precipitation in space to 1.0° resolution. Also the TRMM 3-hourly real-time dataset was

used to disaggregation in time from daily to 3 hourly. Downward radiation, specific

humidity, surface air pressure, and wind speed meteorological variables are downscaled

in space while accounting for changes in elevation.

The PRINCETON dataset contains download solar radiation, download long-

wave radiation, surface air temperature, surface air pressure, surface air specific humidity,

wind speed, total precipitation rate. They all are stored in netCDF format, but with the

ocean grids, so PRINCETON dataset occupies a huge disk spaces. Its long time series

and splendid correction methods made it a good candidate for validating and evaluating

the land surface model.

4.3 Temporal Interpolation of the Forcing Data

 As stated above, GSWP and PRINCETON datasets all are netCDF format, and of

the same spatial resolution, but the PRINCETON dataset has a very long time series. And

their time intervals are 3hours, which is not suitable for contemporary land surface

models. The CoLM usually uses the time step at 30 minutes, so we have to do temporal

interpolation to make the GSWP and PRINCETON dataset suitable for CoLM.

 27

 In interp/src directory, we provided several temporal interpolation programs to

handle different atmospheric variables. These variables includes download solar radiation

(SW_interp.F90), long-wave radiation (LW_interp.F90), precipitation rate

(Rain_interp.F90, drv_finterp.F90), wind speed, air temperature, air specific humidity,

air pressure (all share the same temporal interpolation program: UVTPQ_interp.F90).

The precipitation interpolation program (drv_finterp.F90) is a statistical method provided

by GSWP2. And other variables’ interpolation nearly all based on the Cubic Spline

method, except in the solar short wave radiation interpolation, the sun elevation angle

being considered.

 In interp/nml directory some example namelist files for the interpolation are

provided, including GSWP2 and PRINCETON data, and the interp/job_interp.csh

demonstrates how to compile these interpolation programs and execute them. In

job_interp.csh script, users should select which dataset being used (GSWP2 or

PRINCETON), and the interpolation program being compiled dependent on this

information to invoke the right data reading procedures. And finally the 3hourly raw

forcing data is interpolated into 30minture interval, and all stored in a 1D vector array

like GSWP2 dataset format. The ocean grids in PRINCETON data are dropped to save

the storage space. The final data is of the same netCDF format, in spite of its source from

GSWP2 or PRINCETON, this makes the CoLM time-loop program handle the forcing

dataset easier.

 The Table 9 lists the netCDF header information of the processed GSWP2 or

PRINCETON dataset.

Table 9: netCDF File Information of the Processed Atmospheric Forcing Data

DIMENSIONS:

lon The longitude dimension

lat The latitude dimension

land The land dimension, used to compress the

2D xy grid data into 1D vector data, by

ignoring the ocean grids to reduce the file

size.

time The time dimension

Variables:

origin_year The start year of the data

origin_month The start month of the data

 28

origin_day The start day of the data

origin_second The start second of the data

lon The longitude value of the data grids

lat The latitude value of the data grids

land The land index of all on-land grids. A

grid’s land index value (kland) is calculated

from its longitude index (ilon), latitude

index (jlat) and the size of the longitude

dimension (nlon), using the formula:

kland = (jlat-1)*nlon + ilon

time All time records of the data

variable The variable to store the data of the grids,

which is of the dimension (time, land).

The time and land variables describe the

exact time records and land grids.

The scientific description of GSWP and PRINCETON dataset is given in:

[1]. Paul Dirmeyer, Xiang Gao and Taikan Oki, 2002: The Second Global Soil Wetness

Project – Science and Implementation Plan. IGPO Publication Series No.37.

[2]. Justin Sheffield, Gopi Goteti and Eric F. Wood, 2006: Development of a 50-Year

High-Resolution Global Dataset of Meteorological Forcings for Land Surface

Modeling. Journal of Climate. Vol 19, p3088-3111.

 29

5. CoLM Model Structure and Parallel Implementation

 The computing flow of the CoLM could be viewed as doing time-looping

calculation for each patch (sub-grid). The whole computing process has no interaction

among different patches, except when calculating the grid average fluxes. And currently,

the processes of each grid totally have no relation with others. This type computing flow

and model structure gives a good agreement with the MPI SPMD (Single Program,

Multiple Data) parallel method naturally. Also to archive good portability, we adopted

the MPI SPMD as the parallel method.

5.1 CoLM Model Structure

 Under the offline condition, the CoLM usually firstly makes the surface dataset,

then makes the initial dataset, and finally do the time-loop calculations.

 The computing flow and the invoking procedure of the surface data making

program are demonstrated in the Figure 1:

Figure 1: Flow Chart of the Surface Data Making

 The computing flow and the invoking procedure of the initial data making

program are demonstrated in the Figure 2:

Figure 2: Flow Chart of the Initial Data Making

Making Surface Data

(mksrfdata.F90)

Create or Read model grid

(crgrid.F90/rdgrid.F90)

Read raw land data

(rdlanddata.F90)

Write surface data

Read namelist

 30

The computing flow and the invoking procedure of the time-looping program are

demonstrated in the Figure 3:

Figure 3: Flow Chart of the Time-looping Calculation

Time-looping (CLM.F90)
CLMDRIVER (CLMDRIVER.F90)

Flux average (flux_p2g.F90)

Read namelist, initial data, and do parallel

decomposition (spmd_decomp.F90)

Write history data (histdata.F90)

Finish the model (final.F90)

Read atmospheric forcing data

L
o
o
p
in

g

Initial Data Making Data

(CLMINI.F90)

Read in surface data

(initialize.F90)

Making time constant variables

(iniTimeConst.F90)

Make time vary variables

(iniTimeVar.F90)

Read namelist

Write initial data

 31

5.2 CoLM MPI Parallel Design

For the surface making and time looping are two time-consuming part of the

CoLM, we’ll talk their parallel design respectively. And the initial data making program

does little computing, we’ll leave it as the serial program.

The surface data making program needs read in huge volume of the raw high

resolution land surface data (USGS dataset has a spatial resolution at 30arc second),

including land cover categories, soil types etc. The characteristic of the land surface

making program is 90 percent of the running time occupied by the data reading procedure

(rdlandata.F90). So we should emphasize on how to parallel the reading process. In fact,

the current USGS dataset being used by CoLM all stored in FORTRAN record format

files, which could be accessed randomly. So we could parallel this time consuming part

by partitioning the model domain into several sub-domains of the nearly equal area, and

each process involved in computing only read the raw data related to its sub-domain. The

bottleneck of the method adopted is when the IO bandwidth of the computer system is

lower, the parallel efficiency will be not very well. This determined by the characteristic

of the surface making program. Some good example is SGI Altix platform, for its large

IO bandwidth, a good parallel efficiency is reached.

The Figure 4 shows how to partition the whole model domain into several sub-

domains in surface making program. In this example, three processes are involved in

surface making, which being represented as P1, P2 and P3 in Figure 4:

CLMDRIVE

R

C
L

M
M

A
IN

Net Solar Absorbed

Leaf Interception

P
at

ch
 L

o
o
p
in

g
 Thermal Processes

Hydrological Processes

Snow Processes

Eco Dynamics

Surface Albedo

 32

Figure 4: Diagram of the domain partition at surface data making

The time-looping calculation program’s most running time occupied on reading

the atmospheric forcing dataset and integrating over each patch. The forcing data reading

time varies with different dataset, mostly related with its format, and its size. Parallel the

forcing data read procedure will bring into many difficult when new data format being

introduced, some format file not easy to work under parallel environments. So we could

migrate the time costing in reading forcing data into preparation stages of the forcing

dataset. And make the forcing data more easily to handle in time-looping calculation

program. This is also helpful to introduce new dataset, and we don’t need to touch too

much model code. So the main problem left is how to parallel the integration over each

patch. As we know, different patch with different land cover category, and thus involving

different physics, biogeophysics, biogeochemistry processes, so with different running

time. How to balance these differences is the critical point to parallel CoLM model. But

on a large spatial scale, the adjacent grids usually have same or similar vegetation cover

and other surface characters, so assigning adjacent grids on geographical locations to

each involving computing processes could eliminate the difference stated above. So we

assigned all model grids from north to south, from west to east, using the Round-Robin

method, to each computing process. Finally each computing process get a nearly equal

share of grids of certain land surface characters.

 In Figure 5, a diagram demonstrates how to decompose domain grids when time-

looping calculation. This example also contains three processes to calculate, each being

represented as P1, P2 and P3.

North
E

ast W
es

t

South

P1

P3

P2

 33

Figure 5: Diagram of the domain partition at time-looping calculation

5.3 CoLM MPI Parallel Implementation

 We adopted the most common parallel mode, master & slave model, to parallel

the CoLM. It means that the N processes involved computing, one of them will handle

some extra work, such as assigning workset, taking charge of reading or writing data etc.

 To make the surface making program working with a sub-domain partition

fashion, we partition the whole domain before the program reading the high resolution

land dataset (rdlanddata.F90), and use two variables (js, je) to indicate the indies of the

begin and end point at latitude direction. The rdlanddata.F90 subroutine will use these

two variables to calculate the exact dataset it reads. After all processes processed their

sub-domains, the master will gather all data of sub-domains and finally write them out.

 The parallel of the time-looping part is a little complex than the surface making

program, most of the difficult comes from the Round-Robin fashion assigning workset,

which makes the grids calculated by each process not adjacent on spatial, thus the data

collection procedure becomes complex. To locate every patch or grid of all processes, we

add a variable (pgmap) for each process to establish the mapping relationship between its

own patches and its own grids, a variable (pmap) for each process to establish the

mapping relationship of its own patches with the whole domain’s total patches, a variable

(gmap) for each process to establish the mapping relationship of its own grids with the

whole domain’s total grids. These three variables help do data scattering and gathering in

North
E

ast W
es

t

South

P2 P1 P3 P1 P2

P2 P3 P1 P2 P3

P3

P1

P1

P1 P3 P2 P3 P1 P2 P3

P2 P3 P1

P2 P3 P1 P2

P1 P2 P3

P2 P1 P3 P1 P2

P2 P3 P1 P2 P3

P3

P1

P1

P1 P3 P2 P3 P1 P2 P3

P2 P3 P1

P2 P3 P1 P2

P1 P2 P3

 34

parallel model. And they are built after the model invoked spmd_decomp.F90. In

spmd_decomp.F90, the model will build the pgmap, pmap, gmap according to the

variables ixy_patch and jxy_patch, which are created in initial data making. After these

procedures, all related model time constant and time varying variables will be dispatched

respectively according to patches mapping relationship and grids mapping relationship.

When forcing data being dispatched (in forcedata.F90), and fluxes data being gathered

(in histdata.F90), these three variables also are used to build the exact grid-patch

mapping relationship.

 In Figure 6, a diagram demonstrates the mapping relationship between patches

and grids. In this example, two processes, five model grids (g1, g2, g3, g4, g5), nine

model patches (p1, p2, p3 … p9) are involved in calculation. The grid g1 of the whole

domain has three patches: p1, p2 and p3, the grid g2 of the whole domain has two patches:

p4 and p5, and etc. Only the first process’s patches and grids mapping relationship

illustrated on the figure. The green lines represent the mapping relationship between

process’s own patches and grids. The blue lines represent the mapping relationship

between process’s own patches and the whole domain’s total patches. The red lines

represent the mapping relationship between the process’s own grids and the whole

domain’s grids.

Figure 6: Diagram of the patches and grids mapping relationship

Grids of Process 1

Grids of Whole Domain

Patches of Whole Domain

Patches of Process 1

p2 p1 p3 p4 p5 p6 p7 p8 p9

g1 g2 g3 g5 g4

p2 p1 p3 p4 p5

g1 g2 g3

 35

5.4 CoLM Source Code and Subroutines Outline

Table 10: Source Code and Subroutines Outline

File in include/ directory

include/define.h CPP tokens used to distinguish the function

blockes of the CoLM

Files (subroutines) in mksrfdata/ directory

mksrfdata.F90 The main program to do the surface data

making

crgrid.F90 (crgrid) Create the model grids based on the

domain edges and the number of grids

specified

rdgrid.F90 (rdgrid) Read the model grids information form a

file, depending on the CPP token RDGRID

celledge.F90 (celledge) Calculate the edges of each model grid

cellarea.F90 (cellarea) Calculate the area of each model grid based

on the its edges

rdlanddata.F90 (rdlanddata) Read the USGS high resolution raw

dataset, including land cover categories,

soil categories etc

spmd.F90 (p_init, p_exit) The MPI common subroutines, shared with

the time-looping source code

Files (subroutines) in mkinidata/ directory

CLMINI.F90 The main program to do the initial data

making

initialize.F90 (initialize) The subroutine to do further preparation

work and calls all initial data making

related subroutines

vegpara.h A header file contains all vegetation related

parameters for USGS, IGBP, SiB2, BATS

land cover category legends

iniTimeConst.F90 (iniTimeConst) The subroutine to set the model parameters

not varying with time

iniTimeVar.F90 (iniTimeVar) The subroutine to set the model parameters

varying with time

lai_empirical.F90 (lai_empirical) A empirical method to calculate the leaf

area index, stem area index and etc.

orb_coszen.F90 (orb_coszen) Calculate the cosine of the solar zenith

angle

 36

rstFileMod.F90 (rstTimeConstRead,

rstTimeConstWrite, rstTimeVarRead,

rstTimeVarWrite)

Subroutines to handle the model restart

files

snowfraction.F90 (snowfraction) Calculate the snow fraction relative to the

whole model grid

twostream.F90 (twostream) Calculate the canopy albedos via two

stream approximation (direct and diffuse)

and partition of incident solar

Files (subroutines) in main/ directory

CLM.F90 The main program to do the time-looping

calculation

CLMDRIVER.F90 (CLMDRIVER) CoLM driver which to do further

preparation work before calculate each

model patch

CLMMAIN.F90 (CLMMAIN) The core subroutine which invokes all land

surface processes for each patch

GETMET.F90 (getmet) Read the ASCII format atmospheric

forcing dataset

LAKE.F90 (lake) A lake sub-model invoked when the land

cover category is Lake

SOCEAN.F90 (socean) A simple ocean sub-model

THERMAL.F90 (THERMAL) Calculate the thermal processes and surface

fluxes

WATER.F90 (WATER) Calculate the hydrological processes

albland.F90 (albland) Calculate fragmented albedos (direct and

diffuse) in wavelength regions split at

0.7um.

albocean.F90 (albocean) Calculate the ocean surface albedoes for

direct/diffuse for two spectral intervals

dewfraction.F90 (dewfraction) Determine fraction of foliage covered by

water and fraction of foliage that is dry and

transpiring

eroot.F90 (eroot) Calculate the effective root fraction and

maximum possible transpiration rate

final.F90 (final) Subroutine to do some final work when the

model finished

flux_p2g.F90 (flux_p2g) To do the grid fluxes averaging from its

patches

forcedata.F90 (read_forcedata) Read the atmospheric forcing dataset, also

could read the LAI & SAI forcing dataset

groudfluxes.F90 (groudfluxes) Calculate the surface fluxes

groupdtem.F90 (groundtem) Calculate the soil and snow temperature

hCapacity.F90 (hCapacity) Calculate the soil and snow heat capacities

 37

hConductivity.F90 (hConductivity) Calculate the soil and snow thermal

conductivities

histdata.F90 (write_histdata) Write out the model history data

spmd_decomp.F90 (mpi_decomp) Initial work before doing time-looping

calculation, including reading time constant

and varying data, also the parallel

decomposition

lai_empirical.F90 (lai_empirical) A empirical method to calculate the leaf

area index, stem area index and etc.

leafinterception.F90 (leafinterception) Calculate the interception and drainage of

the precipitation

leaftemone.F90 (leaftemone) One-Big-Leaf canopy model

leaftemtwo.F90 (leaftemtwo) Two-Big-Leaf canopy model

lpwrite.F90 (lpwrite) Determine when to write the history data

meltf.F90 (meltf) Calculate the phase change within snow

and soil layers

Moninobuk.F90 (moninobuk) Calculation of friction velocity, relation for

potential temperature and humidity profiles

of surface boundary layer

ncdata.F90 (ncdata_init, ncdata_read,

ncdata_close)

netCDF dataset interfaces to handle the

GSWP & PRINCETON atmospheric

forcing data

netsolar.F90 (netsolar) Net solar absorbed by surface

newsnow.F90 (newsnow) Add new snow nodes

orb_coszen.F90 (orb_coszen) Calculate the cosine of the solar zenith

angle

paramodel.h Model const parameters

phycon_module.F90 Physical constants

qsadv.F90 (qsadv) Compute saturation mixing ratio and

change in saturation mixing ratio with

respect to temperature

rstFileMod.F90 (rstTimeConstRead,

rstTimeConstWrite, rstTimeVarRead,

rstTimeVarWrite)

Subroutines to handle the model restart

files

snowage.F90 Update snow cover and snow age

snowcompaction.F90 (snowcompaction) Compute the metamorphisms of changing

snow characteristics caused by destructive,

overburden, and melt.

snowfraction.F90 (snowfraction) Calculate the snow fraction relative to the

whole model grid

snowlayerscombine.F90

(snowlayerscombine)

Combine the snow layers according to the

prescribed minimum thickness

snowlayersdivide.F90 (snowlayersdivide) Subdivides snow layer when its thickness

exceed the prescribed maximum

snowwater.F90 (snowwater) Calculate the melted and infiltrated water

 38

soilwater.F90 (soilwater) Calculate the soil water contents based on

the Richard Equation

spmd.F90 (p_init, p_exit) The MPI common subroutines

stomata.F90 (stomata) Calculation of canopy photosynthetic rate

using the integrated model relating

assimilation and stomatal conductance.

subsurfacerunoff.F90 (subsurfacerunoff) Calculate the subsurface runoff

surfacerunoff.F90 (surfacerunoff) Calculate the surface runoff

timemgr.F90 (ticktime) Step up the model time and control the

model spin-up

twostream.F90 (twostream) Calculate the canopy albedos via two

stream approximation (direct and diffuse)

and partition of incident solar

 39

6. CoLM Parameter and Variables

 CoLM contains many model parameters and variables, which control the model

behavior, store the model states, diagnose the model performance and etc. Most of them

can be categorized into six categories: 1) model parameters; 2) time invariant model

variables; 3) tunable model constants; 4) time-varying state variables; 5) atmospheric

forcing variables; 6) fluxes variables. In the following Tables, most of model parameters

and variables will be explained.

6.1 CoLM Model Parameters

Table 11: Dimension of model array (paramodel.h)

Parameter Description Value

nl_soil Number of soil layers 10

maxsnl maximum number of snow layers -5

nfcon number of time constant variables 119

nftune number of tunable constants 14

nfvar number of time varying variables 126

nforc number of forcing variables 18

nfldv number of output fluxes 92

nflai number of leaf-area-index time

varying variables

4

maxpatch maximum number of patches in model

grid

25

nlandcateg number of land cover categories 25

nsoilcateg number of soil texture categories 17

Table 12: Control Variables to Determine Updating on Time Steps

Variables Description

dolai True if time for time-varying vegetation parameters updating

doalb True if time for surface albedo calculation

dosst True if time for update sst/ice/snow

6.2 CoLM Time invariant model variables

Table 13: Model Time invariant variables - fcon (numpatch,1:nfcon)

Internal name Description Unit Code No.

 40

 Assigned or Derived by Using above Indices

dlat Latitude in radians radians 1

dlon Longitude in radians radians 2

itypwat Land water type index 3

ivt Land cover type of classification index 4

Soil physical

parameters

Derived from soil sand and clay percentages,

and soil color type

albsol Soil albedo for different coloured soils - 5

csol (nl_soil) Heat capacity of soil solids J/(m
3
 K) 6:15

porsl (nl_soil) Fraction of soil that is voids - 16:25

phi0 (nl_soil) minimum soil suction mm 26:35

bsw (nl_soil) Clapp and hornbereger "b" parameter - 36:45

dkmg (nl_soil) Thermal conductivity of soil minerals W/(m K) 46:55

dksatu(nl_soil) Thermal conductivity of saturated soil W/(m K) 56:65

dkdry (nl_soil) Thermal conductivity for dry soil W/(m K) 66:75

hksati(nl_soil) Hydraulic conductivity at saturation mm /s 76:85

Vegetation

static

parameters

Derived from vegetation type

z0m Aerodynamic roughness length m 86

displa Displacement height m 87

sqrtdi Inverse sqrt of leaf dimension m
-0.5

 88

effcon Quantum efficiency of RuBP regeneration molCO2

/molquanta

89

vmax25 Maximum carboxylation rate at 25
o
C at

canopy top

 90

slti s3: slope of low temperature inhibition

function

 91

hlti s4: 1/2 point of low temperature inhibition

function

 92

shti s1: slope of high temperature inhibition

function

 93

hhti s2: 1/2 point of high temperature inhibition

function

 94

trda s5: temperature coefficient in gs-a model 95

trdm s6: temperature coefficient in gs-A model 96

trop Temperature coefficient in gs-A model 97

gradm Conductance-photosynthesis slope parameter 98

binter Conductance-photosynthesis intercep 99

extkn Coefficient of leaf nitrogen allocation 100

chil Leaf angle distribution factor 101

ref (2,2) Leaf reflectance (iw=iband, il=life and dead) 102:105

 41

tran (2,2) Leaf transmittance (iw=iband, il=life and

dead)

 106:109

rootfr(nl_soil) Fraction of roots in each soil layer 111:119

6.3 CoLM TUNABLE constants

Table 14: Model TUNABLE constants - ftune(1:14)

Internal

Name

Description Unit Code

No.

zlnd Roughness length for soil m 1

zsno Roughness length for snow m 2

csoilc Drag coefficient for soil under canopy - 3

dewmx Maximum dew 4

wtfact Fraction of model area with high water table 5

capr Tuning factor to turn first layer T into surface T 6

cnfac Crank Nicholson factor between 0 and 1 7

ssi Irreducible water saturation of snow 8

wimp Water impermeable if porosity less than wimp 9

pondmx Ponding depth mm 10

smpmax Wilting point potential in mm mm 11

smpmin Restriction for min of soil poten. mm 12

trsmx0 Max transpiration for moist soil+100% veg. mm/s 13

tcrit Critical temp. to determine rain or snow 14

6.4 CoLM Time-varying state variables

Table 15: Run Calendar - idate(3)

Internal Name Description Unit Code

No.

year Current year of model run 1

jday Current julian day of model run 2

msec Current seconds of model run (0 - 86400) 3

Table 16: Time-varying Variables for restart run - fvar(numpatch, nfvar)

Internal name Description Unit Code

No.

Main land surface variables

 42

z (maxsnl+1:nl_soil) Node depth m 1:15

dz (maxsnl+1:nl_soil) Interface depth m 16:30

tss (maxsnl+1:nl_soil) Soil temperature K 31:45

wliq(maxsnl+1:nl_soil) Liquid water in layers kg/m
2
 46:60

wice(maxsnl+1:nl_soil) Ice lens in layers kg/m
2
 61:75

tg Ground surface temperature K 76

tlsun Sunlit leaf temperature K 77

tlsha Shaded leaf temperature K 78

ldew Depth of water on foliage mm 79

sag Non dimensional snow age - 80

scv Snow cover, water

equivalent

mm 81

snowdp Snow depth m 82

Vegetation dynamic parameters

fveg Fraction of vegetation cover - 83

fsno Fraction of snow cover on

ground

- 84

sigf Fraction of veg cover,

excluding snow-covered veg

- 85

green Leaf greenness - 86

lai Leaf area index m
2
/m

2
 87

sai Stem area index m
2
/m

2
 88

Radiation related (albedoes)

coszen Cosine of solar zenith angle 89

albg (2,2) Albedo, ground - 90:93

albv (2,2) Albedo, vegetation - 94:97

alb (2,2) Averaged albedo - 98:101

ssun (2,2) Sunlit canopy absorption for

solar radiation (0-1)

- 102:105

ssha (2,2) Shaded canopy absorption

for solar radiation (0-1)

- 106:109

thermk Canopy gap fraction for tir

radiation

- 110

extkb (k, g(mu)/mu) direct solar

extinction coefficient

- 111

extkd Diffuse and scattered diffuse

PAR extinction coefficient

- 112

Additional variables required by

reginal model (WRF & RSM)

 43

tad Radiative temperature of

surface

K 113

tref 2 m height air temperature K 114

qref 2 m height air specific

humidity

 115

rst Canopy stomatal resistance s/m 116

emis Averaged bulk surface

emissivity

- 117

z0ma Effective roughness m 118

zol Dimensionless height (z/L)

used in Monin-Obukhov

theory

- 119

rib Bulk Richardson number in

surface layer

- 120

ustar u* in similarity theory m/s 121

qstar q* in similarity theory kg/kg 122

tstar t* in similarity theory K 123

fm Integral of profile function

for momentum

 124

fh Integral of profile function

for heat

 125

fq Integral of profile function

for moisture

 126

6.5 Atmospheric Forcing

Table 17: Atmospheric Forcing - forcxy(lon_points,lat_points,nforc)

Internal Name Description Uint Code No.

pco2m CO2 concentration in atmos. (35pa) pa 1

po2m O2 concentration in atmos. (20900pa) pa 2

us Wind in eastward direction m/s 3

vs Wind in northward direction m/s 4

tm Temperature at reference height K 5

qm Specific humidity at reference height kg/kg 6

prc Convective precipitation mm/s 7

prl Large scale precipitation mm/s 8

psrf Atmospheric pressure at the surface pa 9

pbot Atm bottom level pressure (or reference height) pa 10

sols Atm vis direct beam solar rad onto srf W/m
2
 11

soll Atm nir direct beam solar rad onto srf W/m
2
 12

solsd Atm vis diffuse solar rad onto srf W/m
2
 13

solld Atm nir diffuse solar rad onto srf W/m
2
 14

frl Atmospheric infrared (longwave) radiation W/m
2
 15

 44

hu Observational height of wind m 16

ht Observational height of temperature m 17

hq Observational height of humidity m 18

6.6 Fluxes Required by Atmospheric Model or Model Output

Table 18: Model Output in xy Grid Form - fldxy (lon_points,lat_points,nforc, nfldv)

Internal

Name

Description Uint Code

No.

 Fluxes required by atmospheric models

taux Wind stress: E-W kg/m/s
2
 1

tauy Wind stress: N-S kg/m/s
2
 2

fsena Sensible heat from canopy height to atmosphere W/m
2
 3

lfevpa Latent heat flux from canopy height to atmosphere W/m
2
 4

fevpa Eevapotranspiration from canopy to atmosphere mm/s 5

fsenl Sensible heat from leaves W/m
2
 6

fevpl Evaporation+transpiration from leaves mm/s 7

etr Transpiration rate mm/s 8

fseng Sensible heat flux from ground W/m
2
 9

fevpg Evaporation heat flux from ground mm/s 10

fgrnd Ground heat flux W/m
2
 11

sabvsun Solar absorbed by sunlit canopy W/m
2
 12

sabvsha Solar absorbed by shaded W/m
2
 13

sabg Solar absorbed by ground W/m
2
 14

olrg Outgoing long-wave radiation from ground+canopy W/m
2
 15

rnet Net radiation W/m
2
 16

xerr Error of water banace mm/s 17

zerr Error of energy balance W/m
2
 18

rsur Surface runoff mm/s 19

rnof Total runoff mm/s 20

assim Canopy assimilation rate mol m
-2

 s
-1

 21

respc Respiration (plant+soil) mol m
-2

 s
-1

 22

 Model state variables

tss Soil temperature K 23-32

wliq Liquid water in soil layers kg/m
2
 33-42

wice Ice lens in soil layers kg/m
2
 43-52

tg Ground surface temperature K 53

tlsun Sunlit leaf temperature K 54

tlsha Shaded leaf temperature K 55

ldew Depth of water on foliage mm 56

scv Snow cover, water equivalent mm 57

snowdp Snow depth m 58

 45

fsno Fraction of snow cover on ground 59

sigf Fraction of veg cover, excluding snow-covered veg 60

green Leaf greenness 61

lai Leaf area index 62

sai Stem area index 63

 Variables required by coupling with regional models

albvdir Averaged albedo [visible, direct] 64

albndir Averaged albedo [near-infrared, direct] 65

albvdif Averaged albedo [visible, difffuse] 66

albndif Averaged albedo [near-infrared, diffuse] 67

emis Averaged bulk surface emissivity 68

z0ma Effective roughness m 69

trad Radiative temperature of surface K 70

ustar U* in similarity theory m/s 71

tstar t* in similarity theory 72

qstar Q* in similarity theory kg/kg 73

zol Dimensionless height (z/L) used in Monin-Obukhov

theory

 74

rib Bulk Richardson number in surface layer 75

fm Integral of profile function for momentum 76

fh Integral of profile function for heat 77

fq Integral of profile function for moisture 78

tref 2 m height air temperature K 79

qref 2 m height air specific humidity kg/kg 80

u10m 10m u-velocity m/s 81

v10m 10m v-velocity m/s 82

f10m Integral of profile function for momentum at 10m 83

 Atmospheric Forcing

us Wind in eastward direction m/s 84

vs Wind in northward direction m/s 85

tm Temperature at reference height K 86

qm Specific humidity at reference height kg/kg 87

prc Convective precipitation mm/s 88

prl Large scale precipitation mm/s 89

pbot Atmospheric pressure at the surface pa 90

frl Atmospheric infrared (longwave) radiation W/m
2
 91

solar Downward solar radiation at surface W/m
2
 92

 46

7. Examples of offline simulation

 In Section 2, we explained the main scripts related with the model running, most

of them based on the parallel version CoLM, and the serial version running is similar to

this. In fact, most of steps to run the CoLM are summarized in the script files jobclm.csh

and jobclm_single.csh. But in this section, we’ll give two examples on how to run the

CoLM step by step without using the existing scripts, to deepen our understanding of the

model running flow. And in the experiments of this section, we assume the top directory

of the CoLM source code is at /home/CoLM, and running the model on Linux or Unix

system based on Intel IA32 or IA64 platform, with an Intel Fortran compiler (ifort) and

GNU make tool (gmake or make) installed. If the netCDF format dataset is used, we also

assume the netCDF software package is installed, including its header files and library

files. And users should be familiar with the Linux/Unix shell environments (such as C

Shell, GNU Bourne-Again SHell), also at least one editor tool (such as nano, vim, emacs).

7.1 Single Point Offline Experiment

The single point offline experiment often is very useful to examine the model

performance, for example to validate some improved or newly added land surface

processes. The atmospheric forcing dataset used in single point experiments usually not

very huge, most of them maybe come from the observation. The land surface properties

maybe also have observation values, such as the sand/clay percentage of the soil and land

cover type, which are more accurate and could replace the USGS dataset. Even the initial

soil temperature and soil moisture have the observed values, using these values we could

set the model at a reasonable initial state, and reduce the spin-up period.

Before we compile the model source code and start the simulation experiment, we

could adjust the default model configure file at /home/CoLM/include/define.h according

to the requirements by setting the different cpp tokens, for example which land cover

category legend is used, whether the initial soil temperature and soil moisture values are

used, or of which format atmospheric forcing is used. In this experiment, we’ll use the

atmospheric forcing data coming along with the default distribution of CoLM, the data is

at the /home/CoLM/data/VAL.DAT.CTRL.INT, which comes from the Valdai Grassland

Site (57.6ºN 33.1ºE) in Russia, with a length of 18 years starting from 1962. For the

format of this atmospheric forcing data is ASCII format, we’ll undefine the NCDATA

cpp token in /home/CoLM/include/define.h. For we don’t use the initial soil state values

for this site, we could undefine SOILINI cpp token, also we use the USGS land cover

category legend, and write the history data at every model step. The parallel function is

also disabled for only one model grid involved in single point experiment. Finally we

could get the following define.h (BOX 6):

 47

BOX 6: EXAMPLE FOR COLM/INCLUDE/DEFINE.H

#undef COUP_CSM

#undef RDGRID

#undef SOILINI

#define offline

#undef BATS

#undef SIB2

#undef IGBP

#define USGS

#define EcoDynamics

#define LANDONLY

#undef LAND_SEA

#undef MAPMASK

#undef NCDATA

#undef PRINCETON

#undef GSWP2

#define WR_HOURLY

#undef SPMD

Users could refer to Section 2 of this technical guide to check the exact meaning

of each cpp token. Finished the model configuration file, we could go to each model

source directory and compile the model, executing the following commands (BOX 7) in

Shell environment to compile the surface making program, initial data making program

and the time-looping calculation program, also we copy the produced executable files

into /home/CoLM/run directory.

BOX 7: COMMANDS TO COMPILE THE MODEL

cd /home/CoLM/mksrfdata

make -f Makefile.intel clean

make -f Makefile.intel

cp srf.x /home/CoLM/run

cd /home/CoLM/mkinidata

make -f Makefile.intel clean

make -f Makefile.intel

cp initial.x /home/CoLM/run

cd /home/CoLM/main

make -f Makefile.intel clean

make -f Makefile.intel

cp clm.x /home/CoLM/run

 48

If all goes smoothly, we’ll get three executable files srf.x, initial.x and clm.x in

/home/CoLM/run directory, which are used to make surface data, initial data and

simulate the land surface processes respectively. If something broken, firstly checking the

model configuration file define.h, whether we set some unreasonable cpp tokens or not;

Then checking Makefile, and making sure we have some useable Fortran 9x compiler;

Finally checking the model source code if users modified some of them.

Now we should create the surface data for the point/site to be simulated. For a

simple running case, we could use the provided USGS land surface data, including the

land cover category, soil category. In the namelist required by the surface making

program (srf.x), we should specify a very small region to cover the point/site to be

simulated, also the exact path name which points to the USGS dataset. Using any editor

tool you like to create the following namelist file (srfdat.stdin) at /home/CoLM/run

directory:

BOX 8: EXAMPLE NAMELIST FILE FOR CREATING SURFACE DATA

&mksrfexp

fmetmask = ''

fmapmask = ''

fgridname = ''

fdemname = '/home/CoLM/rawdata/DEM-USGS.30s'

fmaskname = '/home/CoLM/rawdata/LWMASK-USGS.30s'

flandname = '/home/CoLM/rawdata/VEG-USGS.30s'

fsolaname = '/home/CoLM/rawdata/SOILCAT.30s'

fsolbname = '/home/CoLM/rawdata/SOILCATB.30s'

fsurdat = '/home/CoLM/data/srfdata.valdai’

lon_points = 1

lat_points = 1

edgen = 57.625

edgee = 33.125

edges = 57.575

edgew = 33.075

nlon_metdat = 1

nlat_metdat = 1

/

For single point running, we specify the lon_points=1 and lat_points=1, also the

boundaries surround the experiment site: edgen, edgee, edges, edgew, these variables

direct the surface making program to retrieve the exact land cover category and soil

category data of this site from the raw USGS dataset. The meanings of the other variables

could refer to the Section 2 of this User’s Guide.

At this stage, we could execute the following commands to make the surface data:

 49

BOX 9: EXAMPLE COMMANDS TO CREATE SURFACE DATA

cd /home/CoLM/run

./srf.x < srfdat.stdin >& log.srf

The successful running gives a prompt ―Successful in surface data making‖ at the

end of the log.srf file and a binary surface data at the /home/CoLM/data/srfdat.valdai.

The file log.srf stores all information related with the surface making process.

The second major step to run the CoLM is to make the initial data, which creates

two files: one storing time-constant variables (fhistTimeConst), such as soil physical

attributes; another one storing time-varying state variables (fhistTimeVar), such as soil

temperature and soil moisture. Firstly we create a namelist file required by the initial data

making program. In this namelist file, we should specify the surface data being created in

the above step. Also we should set initial date to start the time-looping calculation, which

must conform to the date of the atmospheric forcing data. Most of information specified

in this namelist will be copied into finfolist file, which later will be used as the input

namelist for the time-looping program. Finally a namelist file named inidat.stdin is

located at /home/CoLM/run, which contains the following clauses:

BOX 10: EXAMPLE NAMELIST FILE FOR CREATING INITIAL DATA

&clminiexp

site = Valdai

greenwich = .true.

start_yr = 1962

start_jday = 1

start_sec = 1800

fsurdat = '/home/CoLM/data/srfdata.valdai'

flaidat = ''

fsoildat = ''

fmetdat = '/home/CoLM/data/VAL.DAT.CTRL.INT '

fhistTimeConst = '/home/CoLM/output/Valdai-rstTimeConst'

fhistTimeVar = '/home/CoLM/output/Valdai-rstTimeVar'

foutdat = '/home/CoLM/output/Valdai'

finfolist = '/home/CoLM/run/clmini.infolist'

lon_points = 1

lat_points = 1

nlon_metdat = 1

nlat_metdat = 1

deltim = 1800

mstep = 931104

 50

/

Then we could execute the following command to make the initial data (BOX 11):

BOX 11: EXAMPLE COMMANDS TO CREATE INITIAL DATA

cd /home/CoLM/run

./initial.x < inidat.stdin >& log.ini

A successful running of the initial data making program gives a prompt ―CLM

Initialization Execution Completed‖ at the end of the log.ini, also other three files:

/home/CoLM/output/Valdai-rstTimeConst, /home/CoLM/output/Valdai-rstTimeVar and

/home/CoLM/run/clmini.infolist. Users could check log.ini to watch the process of the

initial data making. The file /home/CoLM/run/clmini.infolist contains the namlist used

to run the time-looping program. In this case, it looks like the following example (BOX

12):

BOX 12: EXAMPLE NAMELIST FILE FOR TIME-LOOPING

&clmexp

site = Valdai

flaidat = ''

fmetdat = '/home/CoLM/data/VAL.DAT.CTRL.INT '

fhistTimeConst = '/home/CoLM/output/Valdai-rstTimeConst'

fhistTimeVar = '/home/CoLM/output/Valdai-rstTimeVar-1962-001-

01800'

foutdat = '/home/CoLM/output/Valdai'

lhistTimeConst = 150

lhistTimeVar = 160

lulai = 120

lumet = 140

luout = 170

lon_points = 1

lat_points = 1

nlon_metdat = 1

nlat_metdat = 1

numpatch = 2

deltim = 1800

mstep = 931104

/

 51

Also we should create a flux.stdin file to control the flux variables to export as

history files, the following example will export all flux variables (BOX 13):

BOX 13: EXAMPLE NAMELIST FILE FOR FLUX-FILTER

&flux_nml

flux_exp= +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16

+17 +18 +19 +20 +21 +22 +23 +24 +25 +26 +27 +28 +29 +30 +31 +32

+33 +34 +35 +36 +37 +38 +39 +40 +41 +42 +43 +44 +45 +46 +47 +48

+49 +50 +51 +52 +53 +54 +55 +56 +57 +58 +59 +60 +61 +62 +63 +64

+65 +66 +67 +68 +69 +70 +71 +72 +73 +74 +75 +76 +77 +78 +79 +80

+81 +82 +83 +84 +85 +86 +87 +88 +89 +90 +91 +92

/

Now we could run the time-looping program to do the final single-point

simulation. The commands in BOX 14 show the example:

BOX 14: EXAMPLE COMMANDS TO DO TIME-LOOPING CALCULATION

cd /home/CoLM/run

mv clmini.infolist timeloop.stdin

ln -sf flux.stdin fort.7

./clm.x < timeloop.stdin >& log.clm

And the command ―ln –sf flux.stdin fort.7‖ is used to redirect the Fortran logical

unit. The running of the time-looping program maybe need some time, after the model

finished, we could check log.clm to watch if some problems occurred. In this case, the

model results is saved at /home/CoLM/output, the model restart files have the form like

―Valdai-rstTimeVar-YEAR-DAY-SECOND‖, history files have the form like ―Valdai-

YEAR-DAY-SECOND‖, which contain the simulation results. Users could refer to the

GrADS description file at /home/CoLM/graph/flx.ctl to plot the results according to your

requirements.

 In the single point experiment, users could also replace the land surface data

derived from USGS raw dataset with the observation values, such as sand/clay percentage,

land cover category, bedrock depth. The easiest way to complete this is to modify the

value of the corresponding variables before the surface making program writes the

surface data, and users could refer to the relevant code fragment in the source file

 52

/home/CoLM/mksrfdata/mksrfdata.F90. The initial value of the soil temperature and soil

moisture also could be changed, users could refer to the code fragment covered by the

cpp token SOILINI in the file /home/CoLM/mkinidata/initialize.F90.

7.2 Global Offline Experiment with GSWP2 Dataset

 The global offline experiment is similar with the single point offline experiment,

most of the namelist files are also similar, only the number of the model grids and the

atmospheric forcing data has some difference, and the running flow is same. In this

experiment, we’ll skip those similar steps, and only focus on how to prepare the forcing

data for a global offline experiment, using the GSWP2 dataset as an example.

 In Section 7.1, the single point offline experiment uses the atmospheric forcing

data of the ASCII format, the time-looping program uses the subroutine GETMET in

/home/CoLM/main/GETMET.F90 source file to handle this type forcing data. But when

using GSWP2 dataset, which is of netCDF format, the subroutine ncdata_read in

/home/CoLM/main/ncdata.F90 is used. Currently this code only support pre-processed

GSWP2 and PRINCETON dataset.

 As stated in Section 4, CoLM usually uses a model time step of 30 minutes, and

most of the re-analysis data products have a time interval of 3 hours. To eliminate this

gap, we could do a temporal interpolation for the raw re-analysis data. And in the default

distribution of the parallel version CoLM, some temporal interpolation subroutines based

on Cubic Spline method are provided, these subroutines are not perfect, users are

encouraged to improve them. In this section we’ll explain how to use these subroutines to

per-process the GSWP2 dataset.

 Most of the information about the GSWP2 dataset has been stated in Section 4,

here we’ll demonstrate how to interpolate the GSWP2 data and feed them to the CoLM.

We’ll use the short wave solar radiation dataset as an example. Assuming the original

GSWP2 solar radiation dataset is at /home/gswp2/SWdown_srb. We could use the

command ncdump provided with the netCDF software package to check the file

information of these GSWP2 dataset. Now we’ll interpolate the 3-hour interval original

GSWP2 solar radiation data into 30-minute interval, using the interpolation program

provided in the default CoLM distribution. Firstly we compile the interpolation program,

the netCDF package is assumed being install at /usr/local/netCDF directory, the BOX 15

shows the example commands.

BOX 15: EXAMPLE COMMANDS TO COMPILE THE INTERPOLATION PROGRAM

 53

cd /home/colm/interp/src

ifort -c spline_interp.F90

ifort -c -fpp -DGSWP2 -I/usr/local/netCDF/include

data_io.F90

ifort -c -fpp -DGSWP2 -I/usr/local/netCDF/include

SW_interp.F90

ifort -o SW_interp.x spline_interp.o data_io.o

SW_interp.o -L/usr/local/netCDF/lib -lnetcdf

 The successful compilation produces the SW_interp.x program, which is used to

interpolate the GSWP2 solar radiation dataset. Now we create an input file to list the

number of files and the variable to interpolate, also the original files’ name and the output

files’ name. In original GSWP2 dataset, SWdown is the variable to store the solar

radiation dataset. BOX 16 gives a simple example:

BOX 16: EXAMPLE INPUT FILE TO CONTROL THE INTERPOLATION

1

‘SWdown’

‘/home/gswp2/SWdown_srb/SWdown_srb198207.nc’

‘/home/gswp2/SWdown_srb/SWdown_srb198207_30min.nc’

 Saving the above content into the file gswp_sw.stdin, and using it as the input file

to the SW_interp.x program, with the executing the command ―./SW_interp.x <

gswp_sw.stdin‖, we’ll get the solar radiation dataset of 30-minute interval. The

procedures to interpolate other GSWP2 atmospheric forcing dataset are similar, and we’ll

skip them here.

The netCDF files produced by the interpolation program are of the format

required by the ncdata.F90 in time-looping calculation program. Introducing any new

netCDF format data, users should pre-process them according to the requirements stated

in Section 4, the detailed information about the file format, users could refer to the

ncdata.F90 source code file.

 With these processed netCDF format GSWP2 atmospheric forcing dataset, we

could repeat the steps in the single point offline experiment, with some little modification

to the namelist files, to run a global offline experiment.

 54

8. Coupling of CoLM with CSM/ESM

 In above several sections, we explained the procedures to make surface data and

initial data, also basic steps to carry out single point or regional/global offline simulations.

When carrying out offline simulations, we need near surface meteorology fields as upper

boundary data to drive land surface model. On the other hand, land surface as a part of

earth system, its surface albedo, evapotranspiration, latent and sensible heat fluxes all

affect the evolution of the upper atmosphere at many different time scales, so the land

surface model becomes an important component in contemporary climate system models

(CSMs) or earth system models (ESMs). In this section, we’ll discuss the basic principles

on coupling CoLM with CSM or ESM, also some modules helping to build an integrated

CSM or ESM. Especially, we’ll use the coupling between CoLM and GCESSM (Global

Change Consortium - Earth System Model) as an example. Before explain the detailed

coupling procedures, we’ll give a brief introduction on the general framework of

contemporary CSM and ESM.

8.1 General framework of CSM/ESM

 As the performance of super computer advances rapidly, it becomes possible to

consider more and more physics or chemistry processes in CSM, also increase the spatial

resolution of CSM. With explicit consideration of biogeochemistry cycles in traditional

CSM, especially focusing on terrestrial and marine carbon cycle, even nitrogen,

phosphorus, ecosystems and human earth interactions, CSM evolves to ESM, which

describes the earth climate system more comprehensively and more accurately. At the

same time, CSM and ESM grow into super complex software systems, which push a big

burden on model development and maintenance. In contemporary CSM or ESM, to

simplify the model development and decrease the model complex, model communities

adopt a modular framework to define the whole structure and interactions among

different components. In this framework, different model or component represents a

different part of earth climate system, then all components interact with each other

through a central component to exchange fluxes at interfaces, this central component is

usually called coupler. With this new modular framework, CSM and ESM could also

maintain a good computing scalability on contemporary super computer architecture. The

Figure 7 is a general framework being widely used in contemporary CSM or ESM,

around the central coupler, there’re atmosphere (atm), ocean (ocn), land (lnd), sea ice (ice)

components, each component represents a single model to simulate its part of earth

climate system, and they interact with each other via coupler (cpl) by sending or

receiving its boundary flux to the coupler.

Figure 7: General framework of CSM/ESM

 55

8.2 Coupling with GCCESM

The GCCESM is an Earth System Model which was built up to improve our

understanding of global changes and human-earth interactions (Figure 8). Besides one

central component, GCCESM currently contains four separate models simultaneously

simulating the earth’s atmosphere, ocean, land surface and sea-ice, an ice-sheet

component based on GLIMMER is under coupling. The initial framework of GCCESM is

based on the atmosphere model CAM3.5 from National Center for Atmospheric Research

(NCAR), the ocean model MOM4p1 (2009 version) from Geophysical Fluid Dynamics

Laboratory (GFDL), the land surface model CoLM3 from Beijing Normal University

(BNU), the sea ice model CICE4.1 from Los Alamos National Laboratory (LANL), the

coupler and software framework are based on CCSM3.5 from National Center for

Atmospheric Research (NCAR). Lots of further work was integrated into GCCESM by

Global Change Consortium of China after the initial framework was built up. The

College of Global Change and Earth System Science (GCESS) at Beijing Normal

University (BNU), as the founder of the Global Change Consortium of China, contributed

much important work to GCCESM, especially on MOM4p1, CICE4.1, CoLM3

components coupling and biogeochemistry cycle modeling, such as carbon-nitrogen

coupled terrestrial biogeochemistry scheme based on Lund-Postdam-Jena (LPJ) dynamic

vegetation model.

Figure 8: The framework of GCCESM

 56

As we all know, in offline mode, land model reads near surface atmospheric

forcing data from files provided by model users. But in coupled mode, the near surface

atmospheric forcing fields are simulated by atmosphere model, and the bottom boundary

conditions required by atmosphere model are simulated by land model. To run two

models continuously, they have to exchange fluxes at the interface. Under the framework

of contemporary CSM/ESM, such as GCCESM, land model and atmosphere model don’t

exchange fluxes directly, but send them to coupler, coupler will pass necessary fields to

each component. In this course, coupler could do further work like regridding, mapping ,

fluxes checking and so on in a more general manner. The communications among

different components and coupler usually use Messages Passage Interface (MPI) based

library to establish, send and receive. In the following section, we’ll focus on the

interaction between land component and coupler, and use GCCESM and its land

component CoLM as an example to explain the basic principle on the coupling procedure.

To establish communication with coupler in CoLM, we should add some interfaces

in land model to interact with coupler, such as sending or receiving fluxes or status

variables. Except normal surface temperature, albedo, sensible and latent heat fluxes, land

model should send the river runoff to ocean model to maintain the water mass balance of

the whole earth climate system. The river runoff to ocean was calculated by and River

Transport Module (RTM) in CoLM. The RTM enables the hydrologic cycle to be closed in

global models, and helps to improve ocean convection and circulation simulations, which is

affected by freshwater input. The RTM in CoLM uses a linear transport scheme at 0.5º

resolution to route water from each grid cell to its downstream neighboring grid cell. In ESM,

for maintaining the carbon cycle, land model also should send the net ecosystem

exchange (NEE) flux to atmosphere model via coupler to calculate the CO2 concentration,

and receive CO2 concentration of bottom atmosphere layer. All these sending and

receiving functions use same procedures provided by coupler, here we’ll only give a table

 57

showing which files and interfaces are added in CoLM to wrap complex coupler

procedures.

Table 19: Interfaces added to couple with GCCESM

Files (interfaces) added in main/ directory to couple with GCCESM

colm_cplMod.F90

colm_cpl_init Initialize variables used to pass fluxes to

coupler

colm_cpl_l2a Extract fluxes simulated by land model,

prepare to send them to coupler

colm_cpl_a2l Extract atmospheric forcing fluxes received

by coupler

colm_cpl_exit Free resources used by coupling

colm_csmMod.F90

csm_setup Setup communication partially

csm_shutdown Shutdown the communication with coupler

csm_initialize Initialize communication between land

model and coupler

csm_dosndrcv Check whether to send or receive fluxes

csm_recv Receiving atmospheric status and fluxes

from coupler

csm_send Sending fluxes of land model to coupler

csm_sendalb Sending 4 bands land albedo to coupler at

the first time step.

csm_flxave Average land model fluxes sending to

coupler

csm_restart Read or write restart information about

coupling between land & coupler.

The following table shows the variables exchanged between CoLM and coupler in

GCCESM, all sending or receiving communication use the procedures listed in the Table

20.

Table 20: Fields exchanged between CoLM and coupler in GCCESM

Fields exchanged between CoLM and coupler in GCCESM

Sending fields

from land model

taux wind stress: E-W [kg/m/s
2
]

tauy wind stress: N-S [kg/m/s
2
]

fsena
sensible heat from canopy height to atmosphere

[W/m
2
]

 58

lfevpa
latent heat flux from canopy height to atmosphere

[W/m
2
]

fevpa
evapotranspiration from canopy to atmosphere

[mm/s]

swabs net absorbed solar radiation [W/m
2
]

olrg
outgoing long-wave radiation from ground+canopy

[W/m
2
]

avsdr averaged albedo [visible, direct]

avsdf averaged albedo [visible, diffuse]

anidr averaged albedo [near-infrared, direct]

anidf averaged albedo [near-infrared,diffuse]

Trad radiative temperature of surface [K]

tref 2 m height air temperature [K]

qref 2 m height air specific humidity [kg/kg]

scv snow cover, water equivalent [mm]

nee net ecosystem exchange flux [mol C/m
2
/s]

roff river flux to the ocean (m
3
/s)

Receiving from

coupler

co2_ppmv CO2 concentration of the bottom atmosphere layer

pbot pressure of the bottom atmosphere layer [Pa]

u zonal wind of the bottom atmosphere layer [m/s]

v
meridional wind of the bottom atmosphere layer

[m/s]

tbot air temperature of the bottom atmosphere layer [K]

shum air humidity of the bottom atmosphere layer [kg/kg]

rainc liquid Convective precipitation rate [kg/m
2
/s]

rainl liquid Large scale precipitation rate [kg/m
2
/s]

snowc convective snow rate [kg/m
2
/s]

 snowl large scale snow rate [kg/m
2
/s]

swvdr

downward visible direct shortwave radiation flux

[W/m
2
]

swvdf

downward visible diffuse shortwave radiation flux

[W/m
2
]

swndr

downward near-infrared direct shortwave radiation

flux [W/m
2
]

swndf

Downward near-infrared diffuse shortwave radiation

flux [W/m
2
]

 lwdn downward long wave heat flux [W/m
2
]

 dens air density of the bottom atmosphere layer [kg/m
3
]

 z height of the bottom atmosphere layer [m]

To adapt for the communication mechanisms required by coupler, some initial

parts in CoLM time-looping part have to be modifies. The following figure demonstrates

the updated computing flow of the main part of CoLM in coupled mode. In this figure,

 59

we also included the River Transport Module and LPJ based DGVM scheme, to reflect

the whole structure of CoLM in GCCESM.

Figure 9: Flow Chart of the Time-looping Calculation in Coupled Mode

Time-looping (CLM.F90)

CLMDRIVER (CLMDRIVER.F90)

Flux average (fluxave.F90)

Initialize MPI communication groups for flux

coupler and MPI SPMD environment

Write history data (histdata.F90)

Finish the model (final.F90)

Receiving atmosphere status & fluxes

L
o
o
p
in

g

Determine if information should be

sent/received to/from flux coupler

Read namelist, read land surface grid data

Do MPI SPMD decomposition

Read initial/restart data

Initialize River Transport Model

Initialize flux coupler communication

Send first land data (albedo) to coupler

LPJDRIVER (LPJDRIVER.F90)

RTMDRIVER

Sending land fields to coupler

Shutdown flux coupler communication

 60

[End of Document]

