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1. Introduction

This user’s guide provide the user with the coding implementation, and operating
instructions for the Common Land Model (CoLM) which is the land surface
parameterization used in offline mode or with the global climate models and regional
climate models.

The development of the Common Land Model (hereafter we call CLM initial
version) can be described as the work of a community effort. Initial software
specifications and development focused on evaluating the best features of existing land
models. The model performance has been validated in very extensive field data included
sites adopted by the Project for Intercomparison of Land-surface Parameterization
Schemes (Cabauw, Valdai, Red-Arkansas river basin) and others [FIFE, BOREAS,
HAPEX-MOBILHY, ABRACOS, Sonoran Desert, GSWP, LDAS]. The model has been
coupled with the NCAR Community Climate Model (CCM3). Documentation for the
CLM initial version is provided by Dai et al. (2001) while the coupling with CCM3 is
described in Zeng et al. (2002). The model was introduced to the modeling community in
Dai et al. (2003).

The CLM initial version was adopted as the Community Land Model (CLM2.0)
for use with the Community Atmosphere Model (CAM2.0) and version 2 of the
Community Climate System Model (CCSM2.0). The current version of Community Land
Model, CLM3.0, was released in June 2004 as part of the CCSM3.0 release
(http://www.ccsm.ucar.edu/models/ccsm3.0/clm3/). The Community Land Model
(CLM3.0) is radically different from CLM initial version, particularly from a software
engineering perspective, and the great advancements in the areas of carbon cycling,
vegetation dynamics, and river routing. The major differences between CLM 2.0 and
CLM initial version are: 1) the biome-type land cover classification scheme was replaced
with a plant functional type (PFT) representation with the specification of PFTs and leaf
area index from satellite data; 2) the parameterizations for vegetation albedo and vertical
burying of vegetation by snow; 3) canopy scaling, leaf physiology, and soil water
limitations on photosynthesis to resolve deficiencies indicated by the coupling to a
dynamic vegetation model; 4) vertical heterogeneity in soil texture was implemented to
improve coupling with a dust emission model; 5) a river routing model was incorporated
to improve the fresh water balance over oceans; 6) numerous modest changes were made
to the parameterizations to conform to the strict energy and water balance requirements of
CCSM; 7) Further substantial software development was also required to meet coding
standards. Besides the changes from a software engineering perspective, the differences
between CLM3.0 and CLM2.0 are: 1) several improvements to biogeophysical
parameterizations to correct deficiencies; 2) stability terms were added to the formulation
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for 2-m air temperature to correct this; 3) the equation was modified to correct a
discontinuity in the equation that relates the bulk density of newly fallen snow to
atmospheric temperature; 4) a new formulation was implemented that provides for
variable aerodynamic resistance with canopy density; 5) the vertical distribution of lake
layers was modified to allow for more accurate computation of ground heat flux; 6) a fix
was implemented for negative round-off level soil ice caused by sublimation; 7) a fix was
implemented to correct roughness lengths for non-vegetated areas. Documentation for the
Community Land Model (CLM3.0) was provided by Oleson et al. (2004). The
simulations of CLM2.0 coupling with the Community Climate are described in Bonan et
al. (2002). The simulations of CLM3.0 with the Community Climate System Model
(CCSM3.0) are summarized in the Special Issue of Journal of Climate by Dickinson et al.
(2005), Bonan and S. Levis (2005).

Concurrent with the development of the Community Land Model, the CLM initial
version was undergoing further development at Georgia Institute of Technology and
Beijing Normal University in leaf temperature, photosynthesis and stomatal calculation.
Big-leaf treatment by CLM initial version and CLM3.0 that treat a canopy as a single leaf
tend to overestimate fluxes of CO, and water vapor. Models that differentiate between
sunlit and shaded leaves largely overcome these problems. A one-layered, two-big-leaf
submodel for photosynthesis, stomatal conductance, leaf temperature, and energy fluxes
was necessitated to the CLM initial version, that is not in the CLM3.0. It includes 1) an
improved two stream approximation model of radiation transfer of the canopy, with
attention to singularities in its solution and with separate integrations of radiation
absorption by sunlit and shaded fractions of canopy; 2) a photosynthesis—stomatal
conductance model for sunlit and shaded leaves separately, and for the simultaneous
transfers of CO, and water vapor into and out of the leaf—leaf physiological properties
(i.e., leaf nitrogen concentration, maximum potential electron transport rate, and hence
photosynthetic capacity) vary throughout the plant canopy in response to the radiation—
weight time-mean profile of photosynthetically active radiation (PAR), and the soil water
limitation is applied to both maximum rates of leaf carbon uptake by Rubisco and
electron transport, and the model scales up from leaf to canopy separately for all sunlit
and shaded leaves; 3) a well-built quasi-Newton—Raphson method for simultaneous
solution of temperatures of the sunlit and shaded leaves. For avoiding confusion with the
Community Land Model (CLM2.0, CLM3.0 versions), we name this improved version of
the Common Land Model as CoLM.

This was same as model now supported at NCAR. NCAR made extensive
modifications mostly to make more compatible with NCAR CCM but some for better
back compatibility with previous work with NCAR LSM. For purpose of using in a
variety of other GCMs and mesoscale models, this adds a layer of complexity that may be
unnecessary. Thus we have continued testing further developments with CLM initial



version. Some changes suggested by Land Model working groups of CCSM are also
implemented, such as, stability terms to the formulation for 2-m air temperature, a new
formulation for variable aerodynamic resistance with canopy density. CoLM is radically
different from either CLM initial version or CLM2.0 or CLM3.0, the differences could be
summarized as follows,

1) Two big leaf model for leaf temperatures, photosynthesis-stomatal resistance;

2) Two-stream approximation for canopy albedoes calculation with the solution for
singularity point, and the calculations for radiation for the separated canopy
(sunlit and shaded);

3) New numerical scheme of iteration for leaf temperatures calculation; New
treatment for canopy interception with the consideration of the fraction of
convection and large-scale precipitation;

5) Soil thermal and hydrological processes with the consideration of the depth to
bedrock;

6) Surface runoff and sub-surface runoff;

7) Rooting fraction and the water stress on transpiration;

8) Use a grass tile 2m height air temperature in place of an area average for matching
the routine meteorological observation;

9) Perfect energy and water balance within every time-step;

10) A slab ocean-sea ice model;

11) Totally CoLM coding structure.

The development of CoLM is trying to provide a version for public use and
further development, and share the improvement contributed by many groups.

The source code and datasets required to run the CoLM in offline mode can be
obtained via the web from:
http://globalchange.bnu.edu.cn/research/models

The CoLM distribution consists of three tar files:
CoLM _src.tar.gz

CoLM_src_mpi.tar.gz
CoLM_dat.tar.gz.

The file CoLM_src.tar.gz and CoLM_src_mpi.tar.gz contain code, scripts, the file
CoLM_src.tar is the serial version of the CoLM, and the file CoLM_src_mpi.tar.gz is the
parallel version of the CoLM, the file CoLM_dat.tar contains raw data used to make the
model surface data. The Table 1 lists the directory structure of the parallel version model.

Table 1: Model Directory Structure
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Directory Name Description

CoLM/rawdata/ "Raw" (highest provided resolution) datasets
used by CoLM to generate surface datasets at
model resolution. We are currently providing 5
surface datasets with resolution 30 arc second:

DEM-USGS.30s

LWMASK-USGS.30s (not used)

SOILCAT.30s

SOILCATB.30s

VEG-USGS.30s

BEDROCKDEPTH (not available)

LAI (not available)

CoLM/data/ Atmospheric forcing variables suitable for
running the model in offline mode

CoLM/mksrfdata/ |Routines for generating surface datasets

CoLM/mkinidata/ [Routines for generating initial datasets

CoLM/main/ Routines for executing the time-loop calculation
of soil temperatures, water contents and surface
fluxes

CoLM/run/ Script to build and execute the model

CoLM/graph/ GrADs & NCL files for display the history files

CoLM/interp/ Temporal interpolation routines used for GSWP2
& PRINCETON atmospheric forcing dataset

CoLM/tools/ Useful programs related with model running

The scientific description of CoLM is given in

[1]. Dai, Y., R.E. Dickinson, and Y.-P. Wang, 2004: A two-big-leaf model for canopy
temperature, photosynthesis and stomatal conductance. Journal of Climate, 17: 2281-
2299.

[2]. Oleson K. W., Y. Dai, G. Bonan, M. Bosilovich, R. E. Dickinson, P. Dirmeyer, F.
Hoffman, P. Houser, S. Levis, G. Niu, P. Thornton, M. Vertenstein, Z.-L. Yang, X.
Zeng, 2004: Technical Description of the Community Land Model (CLM).
NCAR/TN-461+STR.

[3]. Dai, Y., X. Zeng, R. E. Dickinson, I. Baker, G. Bonan, M. Bosilovich, S. Denning, P.
Dirmeyer, P. Houser, G. Niu, K. Oleson, A. Schlosser, and Z.-L. Yang, 2003: The
Common Land Model (CLM). Bull. of Amer. Meter. Soc., 84: 1013-1023.



[4]. Dai, Y., X. Zeng, and R.E. Dickinson, 2002: The Common Land Model:
Documentation and User’s Guide (http://climate.eas.gatech.edu/dickinson/).

We value the responses and experiences of our collaborators in using CoLM and
encourage their feedback on problems in the current model formulation and the coding,
as well as insight and suggestions for future model refinement and enhancement. It would
be particularly helpful if users would communicate such feedback informally and where
possible share with us documented model applications including manuscripts, papers,
procedures, or individual model development.
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2. Creating and Running the Executable

The CoLM model can run as a stand alone executable where atmospheric forcing
data is periodically read in. It can also be run as part of the atmosphere model where
communication between the atmospheric and land models occurs via subroutine calls or
the special coupler. In this technical guide, we’ll focus on the parallel version CoLM,
most of the scripts and setting of the serial version CoLM are similar to the parallel
version, and even more simple.

offline mode

In order to build and run the CoLM on offline mode, two sample scripts:
jobclm.csh, jobclm_single.csh, and the corresponding Makefile files are provided in run
and other source code directories respectively.

The scripts, jobclm.csh and jobclm_single.csh, create a model executable,
determine the necessary input datasets, construct the input model namelist. Users must
edit these scripts appropriately in order to build and run the executable for their particular
requirements and in their particular environment. These scripts are provided only as an
example to aid the novice user in getting the CoLM up and running as quickly as possible.
The script jobclm_single.csh is used to do a single-point offline simulation experiment,
can be run with minimal user modification, assuming the user resets several environment
variables at the top of the script. In particular, the user must set ROOTDIR to point to the
full disk pathname of the model root directory. And the jobclm.csh is used to do a global
or regional offline simulation experiment, usually should be modified heavily to fulfill
different requirements. The following part we’ll explain the jobclm.csh in detail.

The script jobclm.csh can be divided into five sections:

1) Specification of script environment variables, creating header file define.h;

2) Compiling the surface data making, initial data making, time-loop calculation
programs respectively.

3) Surface data making, including input namelist creating;

4) Initial data making: including input namelist creating;

5) Time-loop calculation: including input namelist creating.

2.1 Specification of script environment variables

The user will generally not need to modify the section of jobclm.csh, except to:
1) set the model domain edges and the basic computer architecture,
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2) set the model path directory,
3) create the subdirectory for output, and
4) create the header file $CLM_INCDIR/define.h.

BOX 1: EXAMPLE FOR SPECIFICATION OF SCRIPT ENVIRONMENT
VARIABLES

# set the basic computer architecture for the model running
setenv ARCH intel

# set the model domain for north, east, south, west edges
setenv EDGE N 90.

setenv EDGE E 180.
setenv EDGE S -90.
setenv EDGE W -180.

# set the number of grids of the ColLM and the forcing dataset at
longitude and latitude directions

setenv NLON CLM 360

setenv NLAT CLM 180

setenv NLON MET 360

setenv NLAT MET 180

# set the number of processes used to parallel computing, MPI
related.
setenv TASKS 24

# The user has to modify the ROOTDIR to his/her root directory,
for example, /people.
setenv ROOTDIR /people/S$SLOGNAME

# 1) set clm include directory root
setenv CLM INCDIR SROOTDIR/CoLM/include

# 2) set clm raw land data directory root
setenv CLM RAWDIR SROOTDIR/CoLM/rawdata

# 3) set clm surface data directory root
setenv CLM SRFDIR SROOTDIR/ColLM/mksrfdata

# 4) set clm input data directory root
setenv CLM DATADIR S$SROOTDIR/CoLM/data

# 5) set clm initial directory root
setenv CLM INIDIR SROOTDIR/CoLM/mkinidata

# 6) set clm source directory root
setenv CLM SRCDIR $SROOTDIR/CoLM/main
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# 7) set executable directory
setenv CLM EXEDIR SROOTDIR/CoLM/run

# 8) create output directory
setenv CLM OUTDIR $SROOTDIR/CoLM/output
mkdir -p $CLM OUTDIR >/dev/null

\cat >! .tmp << EOF
#undef COUP_CSM
#undef RDGRID
#undef SOILINI
#define offline
#undef BATS

#undef SIB2

#undef IGBP
#define USGS
#define EcoDynamics
#define LANDONLY
#undef LAND SEA
#undef SINGLE POINT
#undef MAPMASK
#define NCDATA
#define PRINCETON
#undef GSWP2
#undef DOWNSCALING
#define WR MONTHLY
EOF

if ($STASKS > 1) then
\cat >> .tmp << EOF

#define SPMD

EOF

Endif

\cmp -s .tmp SCLM INCDIR/define.h || mv -f .tmp
$CLM INCDIR/define.h

The ARCH variable is used to set the architecture of the model running, and in the
following section of the jobclm.csh, the make command will use the ARCH variable to
invoke different Makefile to compile the model. The EDGE_N, EDGE_E, EDGE_S,
EDGE_W four variables are used to locate the model domain edges, especially on the
model surface data making. The number of model grids at latitude or longitude direction
is set by the NLAT_CLM and NLON_CLM, these also are used for surface data making.
The number of forcing dataset grids at latitude or longitude direction is set by the
NLAT_MET and NLON_MET, these help do some simple forcing data downscaling
when the model grids not exactly match the forcing dataset grids. The number of
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processors involved in the parallel computing is set by the TASKS environment variables,
if TASKS is great than one, the SPMD cpp token will be specified in define.h
automatically, and the MPI parallel function will be build into the model, users could
modify this logic according to your own requirements.

The file define.h contains model-dependent C-language cpp tokens. C-
preprocessor directives of the form #include, #if defined, etc., are used in the model
source code to enhance code portability and allow for the implementation of distinct
blocks of functionality (such as incorporation of different modes) within a single file.
Header file, define.h, is included with #include statements within the source code. When
make command is invoked, the C preprocessor includes or excludes blocks of code
depending on which cpp tokens have been defined in define.h.

Table 2: define.h CPP tokens

define.h cpp token |Description

OFFLINE If defined, offline mode is invoked

RDGRID If defined, the latitude and longitude of model grids
are provided by input data

USGS If defined, USGS 24 categories land cover legend are
used

IGBP If defined, IGBP 17 categories land cover legend are
used

SiB2 If defined, SiB2 11 categories land cover legend are

used

BATS

If defined, BATS 19 categories land cover legend are
used

EcoDynamics

If defined, dynamic vegetation model is activated

LANDONLY If defined, only land grid are activated

LAND_SEA If defined, land and sea grids are activated

MAPMASK If defined, users should supply the base map file to
locate the specific region

NCDATA If defined, netCDF format atmospheric forcing
dataset being read, currently only supporting GSWP2
& PRINCETON datasets.

PRINCETON If defined, the PRINCETON dataset being used.
Depending on the NCDATA token.

GSWP2 If defiend, the GSWP2 dataset being used. Depending

on the NCDATA token.

DOWNSCALING

If defined, the simple downscaling method used to re-
grid the forcing data, usually used at high resolution
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simulation experiments

SPMD If defined, the MPI parallel function being build into
the model, this token is automatically set by the
jobclm.csh according to the TASKS environmental

variable
WR_HOURLY If defined, history file is write at every time step
WR_DAILY If defined, history file is write in daily average

WR_MONTHLY |If defined, history file is write in monthly average

2.2 Compiling the surface data making, initial data making, time-loop calculation

programs

BOX 2: EXAMPLE FOR COMPILING THE MODEL

echo 'Compiling mksrfdata...'

cd $SCLM_SRFDIR

make -f Makefile.${ARCH} clean

make -f Makefile.${ARCH} >>& $SCLM EXEDIR/compile.log.clm ||
exit 5

cp -f SCLM SRFDIR/srf.x S$SCLM EXEDIR/srf.x

echo 'Compiling mkinidata...'
cd $SCLM_INIDIR

make -f Makefile.${ARCH} clean
make -f Makefile.${ARCH} >>& SCLM EXEDIR/compile.log.clm ||
exit 5

cp -f $CLM INIDIR/initial.x $CLM EXEDIR/initial.x

echo 'Compiling main...'
cd $CLM SRCDIR

make -f Makefile.${ARCH} clean
make -f Makefile.S${ARCH} >>& $SCLM EXEDIR/compile.log.clm ||

exit 5

cp -f SCLM SRCDIR/clm.x SCLM EXEDIR/clm.x

In each source code directory of the model, two Makfiles exist: one is
Makefile.intel, another one is Makefile.iom. The make command uses the ARCH
environment variable to select the right Makefile to compile the model, including the
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surface making program, initial data making program and the time-loop main program.
After the successful compiling procedure, three executable files named srf.x, initial.x and
clm.x should occur in the $CLM_EXEDIR directory. If some accident happened, users
could refer to the compile.log.cim file at the $CLM_EXEDIR directory to figure out the
problem.

2.3 Surface data making: input namelist creating and executing

In this part, the srfdat.stdin namelist being firstly created, this namelist is used to
direct the surface making program how to produce the surface data. The model surface
data “fsurdat” is created by using the high resolution raw surface dataset, i.e., fgridname,
fmaskname, flandname, fsolaname, fsolbname. If RDGRID cpp token defined, the
fgridname should point to the file which contains the model grid information, including
the latitude & longitude of all grids center, else the fgridname leaves blank. The
fmaskname points to the land and ocean mask file, fsolaname points to the upper layer
soil category dataset (0-30cm), fsolbname points to the deeper layer soil category dataset
(30-100cm). Currently all these dataset comes from USGS. The flandname points to the
land cover category classification dataset, currently the CoLM support USGS, IGBP,
SiB2, BATS four land category legends, and each one could be set by modifying the
define.h header file. In the default CoLM_dat.tar.gz dataset, we only provide the USGS
land cover category dataset, users could download other land cover category datasets
from http://edcsns17.cr.usgs.gov/glcc or contact us.

Users want to simulate the limited region (domain) which is not a regular shape,
e.g. a city or state, could use the file fmapmask to specify a base map file, this file
should be a zero/one land mask file, the value one should fill the region interested. And in
the surface making process, the program would care about this, and drop the non-
interested area. The fmapmask file should be at the same resolution as flandname,
fsolaname,fsolbname and etc. A similar file is fmetmask, which is used to filter some
points without atmospheric forcing dataset, it’s also a zero/one land mask file, but it has
the resolution of the model, the points without forcing dataset are also dropped.

A regular grid surface dataset can be generated for a single gridcell or for
gridcells comprising a regional or global domain, lon_points=1, lat_points=1 for a single
gridcell simulation or lon_points =nx, lat_points =ny for a nx x ny model grids simulation.
The model resolution are defined by model grid (lon_points, lat_points) and the domain
edges, i.e.,

edgen: northern edge of model domain (degrees north)

edges: southern edge of model domain(degrees south)

edgew: western edge of model domain (degrees west)

edgee: eastern edge of model domain (degrees east)

15
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The surface making program is paralleled using MPI, so developers want to add

new function should take care of it.

BOX 3: EXAMPLE FOR SURFACE DATA MAKING

cd SCLM EXEDIR
# Create an input parameter namelist file for srf.x

\cat >! $CLM EXEDIR/srfdat.stdin << EOF

&mksrfexp

fmetmask = 'SCLM DATADIR/gswp mask'
fmapmask = '/c2/data/CN basemap/chinamap'
fgridname = !

fdemname = 'SCLM RAWDIR/DEM-USGS.30s'
fmaskname = 'SCLM RAWDIR/LWMASK-USGS.30s'

flandname = 'SCLM RAWDIR/VEG-USGS.30s'

fsolaname = 'SCLM RAWDIR/SOILCAT.30s'
fsolbname = 'SCLM RAWDIR/SOILCATB.30s'
fsurdat = 'SCLM DATADIR/srfdata.ldeg'
lon points = SNLON CLM

lat points = $NLAT_CLM

edgen = SEDGE N

edgee = SEDGE E

edges = SEDGE S

edgew = SEDGE W

nlon metdat = SNLON MET

nlat metdat = SNLAT MET

/

EOF

echo 'Executing CLM Making Surface Data'

if (STASKS > 1)then
mpirun -prefix "[%g] " -np STASKS $CLM EXEDIR/srf.x <
$CLM_EXEDIR/Srfdat.Stdin >& $CLM_EXEDIR/Clm.lOg.Srf
|| exit 5
else
$CLM_EXEDIR/Srf.X < $CLM_EXEDIR/Srfdat.Stdin >&
$CLM EXEDIR/clm.log.srf || exit 5
endif

echo 'CLM Making Surface Data Completed’

2.4 Initial data making: input namelist creating and executing
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Upon successful completion of the surface data making in model grid and patches,
surface data file has been generated in CLM_DATADIR. This section will make the
model time-constant variables and time-varying variables on the model grids and patches.

Table 3: Namelist Variables for Initial data making

Name Description Type Notes
site case name character
greenwich true: greenwich time, false: local time logical required
start_yr starting date for run in year integer required
start_jday starting date for run in julian day integer required
start_sec starting seconds of the day for run in seconds integer required
fsurdat full pathname of surface dataset character | required
(for example, '$CLM_DATADIR/srfdata.valdai')
flaidat full pathname of the leaf and stem area index, | character
dataset
fmetdat full pathname of the meteorological data character | required
(for example,
'$CLM_DATADIR/VAL.DAT.CTRL.INT")
fhistTimeConst | full pathname of time-invariant dataset character | required
(for example,
'$CLM_OUTDIR/VALDAI-rstTimeConst')
fhistTimeVar full pathname of time-varying dataset character | required
(for example,
'$CLM_OUTDIR/VALDAI-rstTimeVar')
foutdat full pathname of output dataset character | required
(for example, '$CLM_OUTDIR/VALDALI)
finfolist full pathname of run information character | required
(for example, '$CLM_EXEDIR/cImini.infolist')
lon_points number of longitude points on model grid integer required
lat_points number of latitude points on model grid integer required
deltim time step of the run in second real required
mstep total model step for the run integer required

BOX 4: EXAMPLE FOR INITIAL DATA MAKING

&clminiexp
site
greenwich

\cat >! $CLM EXEDIR/inidat.stdin << EOF

'GLOBAL'
.true.

# Create an input parameter namelist file for initial.x
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start yr
start jday
start sec
fsurdat
flaidat
fsoildat
fmetdat
fhistTimeConst
fhistTimeVar
foutdat
finfolist
lon points
lat points
nlon metdat
nlat metdat
deltim

mstep

/

EOF

1948
1
= 1800
'SCLM DATADIR/srfdata.ldeg’
= '$SCLM DATADIR/soilini'
'/disk2/jidy/princeton 30min'
'SCLM OUTDIR/GLOBAL-rstTimeConst'
"SCLM OUTDIR/GLOBAL-rstTimeVar'
'"$CLM_OUTDIR/GLOBAL'
'$CLM EXEDIR/clmini.infolist'
$NLON CLM
$NLAT CLM
$NLON_MET
$NLAT MET
= 1800

931104

echo 'Executing CLM Initialization'

$CLM_EXEDIR/initial.X <$CLM_EXEDIR/inidat.Stdin >&
$CLM EXEDIR/clm.log.initial || exit 5

echo 'CLM Initialization Completed'

2.5 Time-loop calculation: input namelist creating and executing

Upon successful completion of the surface data and initial data, files for the time-
constant variables, time-varying variables, and the namelist have been generated in

'$CLM_OUTDIR/VALDAI-rstTimeConst',

'$CLM_OUTDIR/VALDAI-rstTimeVar'

and

the

'$CLM_EXEDIR/cImini.infolist'. These include surface data, initialization files as well as
the namalist file for the model time-loop execution. The variables in the namelist file
cImini.infolist have been specified as Table 4:

Table 4: Namelist Variables for Time-loop Calculation

Name Description Type

site case name character

flaidat full pathname of the leaf and stem area index, character
dataset

fmetdat full pathname of the meteorological data character
(for example,
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'$CLM_DATADIR/VAL.DAT.CTRL.INT")
fhistTimeConst | full pathname of time-invariant dataset character
(for example,
'$CLM_OUTDIR/VALDAI-rstTimeConst')
fhistTimeVar full pathname of time-varying dataset character
(for example,
'$CLM_OUTDIR/VALDAI-rstTimeVar')
foutdat full pathname of output dataset character
(for example, '$CLM_OUTDIR/VALDALI')
IhistTimeConst | logical unit number of restart time-invariant file integer
IhistTimeVar logical unit number of restart time-varying file | integer
lulai logical unit number of LAI data integer
lumet logical unit number of meteorological forcing integer
luout logical unit number of output integer
lon_points number of longitude points on model grid integer
lat_points number of latitude points on model grid integer
numpatch total number of patches of grids integer
deltim time step of the run in second real
mstep total model step for the run integer
spinup_dy Number of days to spin-up integer
spinup_yr Number of years to spin-up integer
fmetelev Full pathname of the grid elevation of the character
atmospheric forcing dataset
nlon_metdat Number of grids of atmospheric forcing data at | integer
longitude direction
nlat_metdat Number of grids of atmospheric forcing data at | integer
latitude direction

As the following example showing, the namelist file used to run the time-loop
part of the CoLM model is created by initial data making program, according to the patch
number and others specified information. Before running the CoLM time-loop program, a
flux.stdin namelist being created, this namelist is used to direct the CoLM history output.
At sometimes, especially with high resolution running case, lots of output data is
produced by the model, and most variables in history data are useless, the flux.stdin is
used to handle this situation, we could use it to filter some useless variables, each variable
headed with a “+” sign will be exported as normal, each variable headed with a “-” sign
will be dropped. But when using the graph scripts in graph/ directory, users should
modify them to comport with the flux.stdin.

Also a downs.stdin namelist is created following the flux.stdin, which is used to
do some simple atmospheric forcing data downscaling.
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BOX 5: EXAMPLE FOR TIME-LOOP CALCULATION

# Create an input parameter namelist file for clm.x

mv -f $CLM EXEDIR/clmini.infolist $CLM EXEDIR/timeloop.stdin

# Create flux export namelist file for clm.x

# Don't change the sequence of the FLUX array elements!!

set FLUX = ( +taux +tauy +fsena
+fevpa +fsenl +fevpl
+fseng +fevpg +fgrnd
+sabvsha +sabg +olrg
+xerr +zerr +rsur
+assim +respc +tss
+wice +tg +tlsun
+1ldew +scv +snowdp
+sigf +green +lai
+avsdr +avsdf +anidr
+emis +z0ma +trad
+tstar +gstar +zol
+fm +fh +fg
t+qgref +ul0m +v10m
+us tvs +tm
+prc +prl +pbot
+solar )

@i=20

set flux exp = "flux exp="

foreach str ($SFLUX)
@ 1 =51 + 1
if("$str" =~ +*) then

set flux exp = "S$flux exp +Si"
else

set flux exp = "$flux exp -$i"
endif

end

\cat >! $CLM_EXEDIR/flUX.Stdin << EOF
&flux nml

$flux exp

/

EOF

\cat >! SCLM EXEDIR/downs.stdin << EOF
&downs nml

edgen = SEDGE N

edgee = SEDGE E

edges = SEDGE S

+1fevpa
+tetr
+sabvsun
+rnet
+rnof
+twlig
+tlsha
+fsno
+sai
+anidf
t+ustar
+rib
+tref
+£10m
+qm
+frl
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edgew = SEDGE W
/
EOF

echo 'Executing CLM Time-looping'

setenv FORTO9 $CLM_EXEDIR/downs.stdin
setenv FORT7 $CLM_EXEDIR/fluX.stdin

if ($TASKS > 1) then

mpirun -prefix "[%g] " -np $TASKS S$CLM EXEDIR/clm.x <
$CLM EXEDIR/timeloop.stdin >&
$CLM EXEDIR/clm.log.timeloop || exit 5
else
SCLM EXEDIR/clm.x < SCLM EXEDIR/timeloop.stdin >&
$CLM EXEDIR/clm.log.timeloop || exit 5
endif

echo 'CLM Running Completed'
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3. CoLM Surface Dataset

The data available as input to the programs mksrfdat include global terrain
elevation, landuse/vegetation, land-water mask, soil types, in which the raw datasets are
only needed if a surface dataset is to be created at surface data making. All data are
available at 30 arc second resolution (Table 4). The data arrangement and format in the
reformatted data file are as follows,

o Latitude by latitude from north to south in same longitude, the data points are
arranged from west to east, starting from 0 degree longitude (or dateline).
o We use 2-character array to store the elevation, and 1-character array to store all

other data (values

< 100).

o All source data files are direct-access, which makes data reading efficient.
« All data are assumed to be valid at the center of the grid box.

Table 5: The list of raw data available

Resolution Data source Coverage  [Size(bytes)
Terrain Height 30 sec. (0.925 km) USGS Global 1,866,240,000
Land-Water Mask” 30 sec. (0.925 km) USGS Global 933,120,000
~ ##
24-Category Land Cover ™| 45 oo (0 925 km) LSGS Global | 933,120,000
17-Category Soil ™ |30 sec. (0.925 km) | FAO+STATSGO|  Global 933,120,000

* The land-water mask data files are derived from USGS vegetation data files. At each of
lat/lon grid points, there is one number indicating the land ( 1), water ( 0), or missing

data (-1) at that point.

" The 24 categories are listed. The 30-sec data are represented by one category-ID
number at each of lat/lon grid point..

Table 6: Description of 24-category (USGS) vegetation categories

Land Cover ID

Description

1

Urban and Built-Up Land

Dryland Cropland and Pasture

Irrigated Cropland and Pasture

Mixed Dryland/Irrigated Cropland and Pasture

Cropland/Grassland Mosaic

OO |W|IN

Cropland/Woodland Mosaic
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7 Grassland

8 Shrubland

9 Mixed Shrubland/Grassland
10 Savanna

11 Deciduous Broadleaf Forest
12 Deciduous Needleleaf Forest
13 Evergreen Broadleaf Forest
14 Evergreen Needleleaf Forest
15 Mixed Forest

16 Water Bodies(Including Ocean)
17 Herbaceous Wetland

18 \Wooded Wetland

19 Barren or Sparsely Vegetated
20 Herbaceous Tundra

21 \Wooded Tundra

22 Mixed Tundra

23 Bare Ground Tundra

24 Snow or Ice

" EAO and STATSGO data are merged together. Both top soil layer (0 - 30 cm) and
bottom soil layer (30 - 100 cm) data are provided. The 17 categories are listed. Similar to
the vegetation data, the 30-sec data are represented by one category-ID number at each of
lat/lon grid point.

Table 7: Description of 17-category Soil categories

Soil Type ID Soil Description
1 Sand
Loamy Sand
3 Sandy Loam
4 Silt Loam
5 Silt
6 Loam
7 Sandy Clay Loam
8 Silty Clay Loam
9 Clay Loam
10 Sandy Clay
11 Silty Clay
12 Clay
13 Organic Materials
14 Water
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15 Bedrock
16 Other
17 No data

Table 8: The relative amounts of sand, soil, and clay

Class No. Soil Texture Class % % %
Sand Silt Clay
1 Sand 92 5 3
2 Loamy Sand 82 12 6
3 Sandy Loam 58 32 10
4 Silt Loam 17 70 13
5 Silt 10 85 5
6 Loam 43 39 18
7 Sandy Clay Loam 58 15 27
8 Silty Clay Loam 10 56 34
9 Clay Loam 32 34 34
10 Sandy Clay 52 6 42
11 Silt Clay 6 47 47
12 Clay 22 20 58
13 Organic materials 0 0 0
14 Water 0 0 0
15 Bedrock 0 0 0
16 Other 0 0 0
17 No data 0 0 0




4. CoLM Atmospheric Forcing Dataset

The CoLM needs the atmospheric forcing data when running at offline mode.
Currently the CoLM support ASCII & netCDF format atmospheric forcing dataset. The
NCDATA cpp token is used to distinguish the format being used. When NCDATA being
set, we could use the GSWP2 and PRINCETON atmospheric dataset of netCDF format,
otherwise the ASCII forcing dataset is used. The ASCII data format is relative simple,
each line represents a time record, which contains short-wave solar radiation [W/m?],
long-wave radiation [W/m?], precipitation rate [mm/s], air temperature [K], wind speed
[m/s], surface air pressure [Pa], specific humidity [kg/kg]. The ASCII format data is easy
to use when doing single-point validating experiments, users could arrange the observed
atmospheric variables according the above requirements and then feed them to the model.
Some special requirements about the ASCII format forcing dataset could be fulfilled by
investigating the source code file GETMET.F90 in main/ directory.

The following two parts we’ll give some details about how to use the GSWP and
PRINCETON dataset in CoLM, the two dataset are widely used in land surface model
validation and development.

4.1 GSWP2 Forcing Dataset

The Global Soil Wetness Project (GSWP) is an ongoing environmental modeling
research activity of the Global Land-Atmosphere System Study (GLASS) and the
International Satellite Land-Surface Climatology Project (ISLSCP), both contributing
projects of the Global Energy and Water Cycle Experiment (GEWEX) in the World
Climate Research Program(WCRP). GSWP was charged with producing as a community
effort global estimates of soil moisture, temperature, snow water equivalent, and surface
fluxes by integrating one-way uncoupled land surface schemes (LSSs) using externally
specified surface forcings and standardized soil and vegetation distributions. GSWP-2
produced the best model estimates of the land-surface water and energy cycles over a ten
year period. This project included an evaluation of the uncertainties linked to the LSSs,
their parameters and the forcing variables. One of the main products of the GSWP2 is a
state-of-the-art land surface model forcing dataset, which provides a common platform to
many land surface models to evaluate their performance.

The GSWP2 dataset contains solar radiation, long-wave radiation, surface air
temperature, surface air specific humidity, surface air pressure, total precipitation rate,
convective precipitation rate, wind speed. Each variable has a data file for each month,
and the date length range from 1982 to 1995, the time interval is 3hours, the spatial
resolution is 1degree. Only the land points have data, so to save the storage space, the
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GSWP2 dataset is compressed from 2D xy array into 1D vector array, the ocean grids are
ignored, and all data files are stored in netCDF format to make it more portable among
different computer platforms.

4.2 PRINCETON Forcing Dataset

The PRINCETON dataset is a global, 50-yr, 3-hourly, 1.0° dataset of
meteorological forcing that can be used to drive models of land surface hydrology. The
dataset is constructed by combining a suite of global observation-based datasets with the
National Centers for Environmental Prediction—National Center for Atmospheric
Research (NCEP-NCAR) reanalysis. For the known biases in the reanalysis precipitation
and near-surface meteorology have been shown to exert an erroneous effect on modeled
land surface water and energy budgets, so the PRINCETON dataset corrected these
problems by using observation-based datasets of precipitation, air temperature, and
radiation. This dataset also made corrections to the rain day statistics of the reanalysis
precipitation, which have been found to exhibit a spurious wavelike pattern in high-
latitude wintertime. Wind-induced undercatch of solid precipitation was removed using
the results from the World Meteorological Organization (WMO) Solid Precipitation
Measurement Inter-comparison. The statistical downscaling developed with the Global
Precipitation Climatology Project (GPCP) daily product was used to disaggregate the
precipitation in space to 1.0°resolution. Also the TRMM 3-hourly real-time dataset was
used to disaggregation in time from daily to 3 hourly. Downward radiation, specific
humidity, surface air pressure, and wind speed meteorological variables are downscaled
in space while accounting for changes in elevation.

The PRINCETON dataset contains download solar radiation, download long-
wave radiation, surface air temperature, surface air pressure, surface air specific humidity,
wind speed, total precipitation rate. They all are stored in netCDF format, but with the
ocean grids, so PRINCETON dataset occupies a huge disk spaces. Its long time series
and splendid correction methods made it a good candidate for validating and evaluating
the land surface model.

4.3 Temporal Interpolation of the Forcing Data

As stated above, GSWP and PRINCETON datasets all are netCDF format, and of
the same spatial resolution, but the PRINCETON dataset has a very long time series. And
their time intervals are 3hours, which is not suitable for contemporary land surface
models. The CoLM usually uses the time step at 30 minutes, so we have to do temporal
interpolation to make the GSWP and PRINCETON dataset suitable for CoLM.
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In interp/src directory, we provided several temporal interpolation programs to
handle different atmospheric variables. These variables includes download solar radiation
(SW_interp.F90), long-wave radiation (LW_interp.F90), precipitation rate
(Rain_interp.F90, drv_finterp.F90), wind speed, air temperature, air specific humidity,
air pressure (all share the same temporal interpolation program: UVTPQ_interp.F90).
The precipitation interpolation program (drv_finterp.F90) is a statistical method provided
by GSWP2. And other variables’ interpolation nearly all based on the Cubic Spline
method, except in the solar short wave radiation interpolation, the sun elevation angle
being considered.

In interp/nml directory some example namelist files for the interpolation are
provided, including GSWP2 and PRINCETON data, and the interp/job_interp.csh
demonstrates how to compile these interpolation programs and execute them. In
job_interp.csh script, users should select which dataset being used (GSWP2 or
PRINCETON), and the interpolation program being compiled dependent on this
information to invoke the right data reading procedures. And finally the 3hourly raw
forcing data is interpolated into 30minture interval, and all stored in a 1D vector array
like GSWP2 dataset format. The ocean grids in PRINCETON data are dropped to save
the storage space. The final data is of the same netCDF format, in spite of its source from
GSWP2 or PRINCETON, this makes the CoLM time-loop program handle the forcing
dataset easier.

The Table 9 lists the netCDF header information of the processed GSWP2 or
PRINCETON dataset.

Table 9: netCDF File Information of the Processed Atmospheric Forcing Data

DIMENSIONS:

lon The longitude dimension

lat The latitude dimension

land The land dimension, used to compress the
2D xy grid data into 1D vector data, by
ignoring the ocean grids to reduce the file
size.

time The time dimension

Variables:

origin_year The start year of the data

origin_month The start month of the data
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origin_day

The start day of the data

origin_second

The start second of the data

lon

The longitude value of the data grids

lat

The latitude value of the data grids

land

The land index of all on-land grids. A
grid’s land index value (kland) is calculated
from its longitude index (ilon), latitude
index (jlat) and the size of the longitude
dimension (nlon), using the formula:

kland = (jlat-1)*nlon + ilon

time

All time records of the data

variable

The variable to store the data of the grids,
which is of the dimension (time, land).
The time and land variables describe the
exact time records and land grids.

The scientific description of GSWP and PRINCETON dataset is given in:

[1]. Paul Dirmeyer, Xiang Gao and Taikan Oki, 2002: The Second Global Soil Wetness
Project — Science and Implementation Plan. IGPO Publication Series No.37.

[2]. Justin Sheffield, Gopi Goteti and Eric F. Wood, 2006: Development of a 50-Year
High-Resolution Global Dataset of Meteorological Forcings for Land Surface
Modeling. Journal of Climate. Vol 19, p3088-3111.
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5. CoLM Model Structure and Parallel Implementation

The computing flow of the CoLM could be viewed as doing time-looping
calculation for each patch (sub-grid). The whole computing process has no interaction
among different patches, except when calculating the grid average fluxes. And currently,
the processes of each grid totally have no relation with others. This type computing flow
and model structure gives a good agreement with the MPI SPMD (Single Program,
Multiple Data) parallel method naturally. Also to archive good portability, we adopted
the MP1 SPMD as the parallel method.

5.1 CoLM Model Structure

Under the offline condition, the CoLM usually firstly makes the surface dataset,
then makes the initial dataset, and finally do the time-loop calculations.

The computing flow and the invoking procedure of the surface data making
program are demonstrated in the Figure 1:

Figure 1: Flow Chart of the Surface Data Making

Read namelist

v

Create or Read model grid
(crgrid.F90/rdgrid.F90)

Making Surface Data 2
(mksrfdata.F90) Read raw land data
(rdlanddata.F90)
v

Write surface data

The computing flow and the invoking procedure of the initial data making
program are demonstrated in the Figure 2:

Figure 2: Flow Chart of the Initial Data Making
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Read namelist
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(initialize.F90)
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Initial Data Making Data Making time constant variables
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(iniTimeVar.F90)
v

Write initial data

The computing flow and the invoking procedure of the time-looping program are
demonstrated in the Figure 3:

Figure 3: Flow Chart of the Time-looping Calculation
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5.2 CoLM MPI Parallel Design

For the surface making and time looping are two time-consuming part of the
CoLM, we’ll talk their parallel design respectively. And the initial data making program
does little computing, we’ll leave it as the serial program.

The surface data making program needs read in huge volume of the raw high
resolution land surface data (USGS dataset has a spatial resolution at 30arc second),
including land cover categories, soil types etc. The characteristic of the land surface
making program is 90 percent of the running time occupied by the data reading procedure
(rdlandata.F90). So we should emphasize on how to parallel the reading process. In fact,
the current USGS dataset being used by CoLM all stored in FORTRAN record format
files, which could be accessed randomly. So we could parallel this time consuming part
by partitioning the model domain into several sub-domains of the nearly equal area, and
each process involved in computing only read the raw data related to its sub-domain. The
bottleneck of the method adopted is when the 10 bandwidth of the computer system is
lower, the parallel efficiency will be not very well. This determined by the characteristic
of the surface making program. Some good example is SGI Altix platform, for its large
10 bandwidth, a good parallel efficiency is reached.

The Figure 4 shows how to partition the whole model domain into several sub-
domains in surface making program. In this example, three processes are involved in
surface making, which being represented as P1, P2 and P3 in Figure 4:
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Figure 4: Diagram of the domain partition at surface data making

North
P1 <(
P3 <(
\ South

The time-looping calculation program’s most running time occupied on reading
the atmospheric forcing dataset and integrating over each patch. The forcing data reading
time varies with different dataset, mostly related with its format, and its size. Parallel the
forcing data read procedure will bring into many difficult when new data format being
introduced, some format file not easy to work under parallel environments. So we could
migrate the time costing in reading forcing data into preparation stages of the forcing
dataset. And make the forcing data more easily to handle in time-looping calculation
program. This is also helpful to introduce new dataset, and we don’t need to touch too
much model code. So the main problem left is how to parallel the integration over each
patch. As we know, different patch with different land cover category, and thus involving
different physics, biogeophysics, biogeochemistry processes, so with different running
time. How to balance these differences is the critical point to parallel CoLM model. But
on a large spatial scale, the adjacent grids usually have same or similar vegetation cover
and other surface characters, so assigning adjacent grids on geographical locations to
each involving computing processes could eliminate the difference stated above. So we
assigned all model grids from north to south, from west to east, using the Round-Robin
method, to each computing process. Finally each computing process get a nearly equal
share of grids of certain land surface characters.

In Figure 5, a diagram demonstrates how to decompose domain grids when time-
looping calculation. This example also contains three processes to calculate, each being

represented as P1, P2 and P3.
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Figure 5: Diagram of the domain partition at time-looping calculation
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5.3 CoLM MPI Parallel Implementation

We adopted the most common parallel mode, master & slave model, to parallel
the CoLM. It means that the N processes involved computing, one of them will handle
some extra work, such as assigning workset, taking charge of reading or writing data etc.

To make the surface making program working with a sub-domain partition
fashion, we partition the whole domain before the program reading the high resolution
land dataset (rdlanddata.F90), and use two variables (js, je) to indicate the indies of the
begin and end point at latitude direction. The rdlanddata.F90 subroutine will use these
two variables to calculate the exact dataset it reads. After all processes processed their
sub-domains, the master will gather all data of sub-domains and finally write them out.

The parallel of the time-looping part is a little complex than the surface making
program, most of the difficult comes from the Round-Robin fashion assigning workset,
which makes the grids calculated by each process not adjacent on spatial, thus the data
collection procedure becomes complex. To locate every patch or grid of all processes, we
add a variable (pgmap) for each process to establish the mapping relationship between its
own patches and its own grids, a variable (pmap) for each process to establish the
mapping relationship of its own patches with the whole domain’s total patches, a variable
(gmap) for each process to establish the mapping relationship of its own grids with the
whole domain’s total grids. These three variables help do data scattering and gathering in
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parallel model. And they are built after the model invoked spmd_decomp.F90. In
spmd_decomp.F90, the model will build the pgmap, pmap, gmap according to the
variables ixy_patch and jxy_patch, which are created in initial data making. After these
procedures, all related model time constant and time varying variables will be dispatched
respectively according to patches mapping relationship and grids mapping relationship.
When forcing data being dispatched (in forcedata.F90), and fluxes data being gathered
(in histdata.F90), these three variables also are used to build the exact grid-patch
mapping relationship.

In Figure 6, a diagram demonstrates the mapping relationship between patches
and grids. In this example, two processes, five model grids (91, g2, g3, g4, g5), nine
model patches (p1, p2, p3 ... p9) are involved in calculation. The grid g1 of the whole
domain has three patches: p1, p2 and p3, the grid g2 of the whole domain has two patches:
p4 and p5, and etc. Only the first process’s patches and grids mapping relationship
illustrated on the figure. The green lines represent the mapping relationship between
process’s own patches and grids. The blue lines represent the mapping relationship
between process’s own patches and the whole domain’s total patches. The red lines
represent the mapping relationship between the process’s own grids and the whole
domain’s grids.

Figure 6: Diagram of the patches and grids mapping relationship
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5.4 CoLLM Source Code and Subroutines Outline
Table 10: Source Code and Subroutines Outline

File in include/ directory

include/define.h

CPP tokens used to distinguish the function
blockes of the CoLM

Files (subroutines) in mksrfdata/ directory

mksrfdata.F90

The main program to do the surface data
making

crgrid.F90 (crgrid)

Create the model grids based on the
domain edges and the number of grids
specified

rdgrid.F90 (rdgrid)

Read the model grids information form a
file, depending on the CPP token RDGRID

celledge.F90 (celledge)

Calculate the edges of each model grid

cellarea.F90 (cellarea)

Calculate the area of each model grid based
on the its edges

rdlanddata.F90 (rdlanddata)

Read the USGS high resolution raw
dataset, including land cover categories,
soil categories etc

spmd.F90 (p_init, p_exit)

The MPI common subroutines, shared with
the time-looping source code

Files (subroutines) in mkinidata/ directory

CLMINI.F90

The main program to do the initial data
making

initialize.F90 (initialize)

The subroutine to do further preparation
work and calls all initial data making
related subroutines

vegpara.h

A header file contains all vegetation related
parameters for USGS, IGBP, SiB2, BATS
land cover category legends

iniTimeConst.F90 (iniTimeConst)

The subroutine to set the model parameters
not varying with time

iniTimeVar.F90 (iniTimeVar)

The subroutine to set the model parameters
varying with time

lai_empirical.F90 (lai_empirical)

A empirical method to calculate the leaf
area index, stem area index and etc.

orb_coszen.F90 (orb_coszen)

Calculate the cosine of the solar zenith
angle
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rstFileMod.F90 (rstTimeConstRead,
rstTimeConstWrite, rstTimeVarRead,
rstTimeVarWrite)

Subroutines to handle the model restart
files

snowfraction.F90 (snowfraction)

Calculate the snow fraction relative to the
whole model grid

twostream.F90 (twostream)

Calculate the canopy albedos via two
stream approximation (direct and diffuse)
and partition of incident solar

Files (subroutines) in main/ directory

CLM.F90

The main program to do the time-looping
calculation

CLMDRIVER.F90 (CLMDRIVER)

CoLM driver which to do further
preparation work before calculate each
model patch

CLMMAIN.F90 (CLMMAIN)

The core subroutine which invokes all land
surface processes for each patch

GETMET.F90 (getmet)

Read the ASCII format atmospheric
forcing dataset

LAKE.F90 (lake)

A lake sub-model invoked when the land
cover category is Lake

SOCEAN.F90 (socean)

A simple ocean sub-model

THERMAL.F90 (THERMAL)

Calculate the thermal processes and surface
fluxes

WATER.F90 (WATER)

Calculate the hydrological processes

albland.F90 (albland)

Calculate fragmented albedos (direct and
diffuse) in wavelength regions split at
0.7um.

albocean.F90 (albocean)

Calculate the ocean surface albedoes for
direct/diffuse for two spectral intervals

dewfraction.F90 (dewfraction)

Determine fraction of foliage covered by
water and fraction of foliage that is dry and
transpiring

eroot.F90 (eroot)

Calculate the effective root fraction and
maximum possible transpiration rate

final.F90 (final)

Subroutine to do some final work when the
model finished

flux_p29.F90 (flux_p29)

To do the grid fluxes averaging from its
patches

forcedata.F90 (read_forcedata)

Read the atmospheric forcing dataset, also
could read the LAI & SAI forcing dataset

groudfluxes.F90 (groudfluxes)

Calculate the surface fluxes

groupdtem.F90 (groundtem)

Calculate the soil and snow temperature

hCapacity.F90 (hCapacity)

Calculate the soil and snow heat capacities
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hConductivity.F90 (hConductivity)

Calculate the soil and snow thermal
conductivities

histdata.F90 (write_histdata)

Write out the model history data

spmd_decomp.F90 (mpi_decomp)

Initial work before doing time-looping
calculation, including reading time constant
and varying data, also the parallel
decomposition

lai_empirical.F90 (lai_empirical)

A empirical method to calculate the leaf
area index, stem area index and etc.

leafinterception.F90 (leafinterception)

Calculate the interception and drainage of
the precipitation

leaftemone.F90 (leaftemone)

One-Big-Leaf canopy model

leaftemtwo.F90 (leaftemtwo)

Two-Big-Leaf canopy model

Ipwrite.F90 (Ipwrite)

Determine when to write the history data

meltf.F90 (meltf)

Calculate the phase change within snow
and soil layers

Moninobuk.F90 (moninobuk)

Calculation of friction velocity, relation for
potential temperature and humidity profiles
of surface boundary layer

ncdata.F90 (ncdata_init, ncdata_read,
ncdata_close)

netCDF dataset interfaces to handle the
GSWP & PRINCETON atmospheric
forcing data

netsolar.F90 (netsolar)

Net solar absorbed by surface

newsnow.F90 (newsnow)

Add new snow nodes

orb_coszen.F90 (orb_coszen)

Calculate the cosine of the solar zenith
angle

paramodel.h Model const parameters
phycon_module.F90 Physical constants
gsadv.F90 (gsadv) Compute saturation mixing ratio and

change in saturation mixing ratio with
respect to temperature

rstFileMod.F90 (rstTimeConstRead,
rstTimeConstWrite, rstTimeVarRead,
rstTimeVarWrite)

Subroutines to handle the model restart
files

snowage.F90

Update snow cover and snow age

snowcompaction.F90 (snowcompaction)

Compute the metamorphisms of changing
snow characteristics caused by destructive,
overburden, and melt.

snowfraction.F90 (snowfraction)

Calculate the snow fraction relative to the
whole model grid

snowlayerscombine.F90
(snowlayerscombine)

Combine the snow layers according to the
prescribed minimum thickness

snowlayersdivide.F90 (snowlayersdivide)

Subdivides snow layer when its thickness
exceed the prescribed maximum

snowwater.F90 (snowwater)

Calculate the melted and infiltrated water
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soilwater.F90 (soilwater)

Calculate the soil water contents based on
the Richard Equation

spmd.F90 (p_init, p_exit)

The MPI common subroutines

stomata.F90 (stomata)

Calculation of canopy photosynthetic rate
using the integrated model relating
assimilation and stomatal conductance.

subsurfacerunoff.F90 (subsurfacerunoff)

Calculate the subsurface runoff

surfacerunoff.F90 (surfacerunoff)

Calculate the surface runoff

timemgr.F90 (ticktime)

Step up the model time and control the
model spin-up

twostream.F90 (twostream)

Calculate the canopy albedos via two
stream approximation (direct and diffuse)
and partition of incident solar
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6. CoLM Parameter and Variables

CoLM contains many model parameters and variables, which control the model
behavior, store the model states, diagnose the model performance and etc. Most of them
can be categorized into six categories: 1) model parameters; 2) time invariant model
variables; 3) tunable model constants; 4) time-varying state variables; 5) atmospheric
forcing variables; 6) fluxes variables. In the following Tables, most of model parameters
and variables will be explained.

6.1 CoLM Model Parameters

Table 11: Dimension of model array (paramodel.h)

Parameter Description Value
nl_soil Number of soil layers 10
maxsnl maximum number of snow layers -5
nfcon number of time constant variables 119
nftune number of tunable constants 14
nfvar number of time varying variables 126
nforc number of forcing variables 18
nfldv number of output fluxes 92
nflai number of leaf-area-index time 4
varying variables
maxpatch maximum number of patches in model 25
grid
nlandcateg number of land cover categories 25
nsoilcateg number of soil texture categories 17

Table 12: Control Variables to Determine Updating on Time Steps

Variables Description

dolai True if time for time-varying vegetation parameters updating
doalb True if time for surface albedo calculation

dosst True if time for update sst/ice/snow

6.2 CoLM Time invariant model variables

Table 13: Model Time invariant variables - fcon (numpatch,1:nfcon)

Internal name

Description

Unit Code No.
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Assigned or Derived by Using above Indices

dlat Latitude in radians

dion Longitude in radians

itypwat Land water type

ivt Land cover type of classification

Soil physical Derived from soil sand and clay percentages,
parameters and soil color type

albsol Soil albedo for different coloured soils
csol (nl_soail) Heat capacity of soil solids

porsl (nl_soil)  Fraction of soil that is voids

phi0 (nl_soil)  minimum soil suction

bsw (nl_soil)  Clapp and hornbereger "b" parameter
dkmg (nl_soil)  Thermal conductivity of soil minerals

dksatu(nl_soil)
dkdry (nl_soil)
hksati(nl_soil)

Vegetation
static

parameters

z0m
displa
sgrtdi
effcon

vmax25
slti

hlti

shti

hhti

trda
trdm
trop
gradm
binter
extkn
chil

ref (2,2)

Thermal conductivity of saturated soil
Thermal conductivity for dry soil
Hydraulic conductivity at saturation

Derived from vegetation type

Aerodynamic roughness length
Displacement height

Inverse sqrt of leaf dimension

Quantum efficiency of RuBP regeneration

Maximum carboxylation rate at 25°C at
canopy top

s3: slope of low temperature inhibition
function

S4: 1/2 point of low temperature inhibition
function

s;: slope of high temperature inhibition
function

s,: 1/2 point of high temperature inhibition
function

Ss: temperature coefficient in gs-a model

Se. temperature coefficient in gs-A model
Temperature coefficient in gs-A model
Conductance-photosynthesis slope parameter
Conductance-photosynthesis intercep
Coefficient of leaf nitrogen allocation

Leaf angle distribution factor

Leaf reflectance (iw=iband, il=life and dead)

radians
radians
index
index

J(m* K)
mm

W/(m K)
W/(m K)
W/(m K)
mm /s

m
m

m—0.5
molCO,

/molguanta

A wWNPE

6:15

16:25
26:35
36:45
46:55
56:65
66:75
76:85

86
87
88
89

90

91

92

93

94

95

96

97

98

99

100

101
102:105
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tran (2,2)

rootfr(nl_soil)

Leaf transmittance (iw=iband, il=life and
dead)
Fraction of roots in each soil layer

106:109

111:119

6.3 CoLM TUNABLE constants

Table 14: Model TUNABLE constants - ftune(1:14)

Internal Description Unit  Code
Name No.
zInd Roughness length for soil m 1
zsno Roughness length for snow m 2
csoilc Drag coefficient for soil under canopy - 3
dewmx Maximum dew 4
wifact Fraction of model area with high water table 5
capr Tuning factor to turn first layer T into surface T 6
cnfac Crank Nicholson factor between 0 and 1 7
SSi Irreducible water saturation of snow 8
wimp Water impermeable if porosity less than wimp 9
pondmx Ponding depth mm 10
smpmax  Wilting point potential in mm mm 11
smpmin Restriction for min of soil poten. mm 12
trsmx0 Max transpiration for moist soil+100% veg. mm/s 13
trit Critical temp. to determine rain or snow 14
6.4 CoLM Time-varying state variables
Table 15: Run Calendar - idate(3)
Internal Name Description Unit Code
No.
year Current year of model run 1
jday Current julian day of model run 2
msec Current seconds of model run (0 - 86400) 3

Table 16: Time-varying Variables for restart run - fvar(numpatch, nfvar)

Internal name

Description Unit

Code
No.

Main land surface variables
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z (maxsnl+1:nl_soil)
dz (maxsnl+1:nl_soil)
tss (maxsnl+1:nl_soil)
wlig(maxsnl+1:nl_soil)
wice(maxsnl+1:nl_soil)
tg

tlsun

tlsha

Idew

sag

scv

snowdp

Vegetation dynamic parameters

fveg
fsno

sigf
green
lai

sal

Radiation related (albedoes)

coszen
albg (2,2)
albv (2,2)
alb (2,2)
ssun (2,2)
ssha (2,2)
thermk
extkb

extkd

Additional variables required hy

reqinal model (WRF & RSM)

Node depth

Interface depth

Soil temperature

Liquid water in layers

Ice lens in layers

Ground surface temperature
Sunlit leaf temperature
Shaded leaf temperature
Depth of water on foliage
Non dimensional snow age
Snow cover, water
equivalent

Snow depth

Fraction of vegetation cover
Fraction of snow cover on
ground

Fraction of veg cover,
excluding snow-covered veg
Leaf greenness

Leaf area index

Stem area index

Cosine of solar zenith angle
Albedo, ground

Albedo, vegetation
Averaged albedo

Sunlit canopy absorption for
solar radiation (0-1)

Shaded canopy absorption
for solar radiation (0-1)
Canopy gap fraction for tir
radiation

(k, g(mu)/mu) direct solar
extinction coefficient
Diffuse and scattered diffuse
PAR extinction coefficient

N

55

ARXZS X33

m?/m?

m?/m?

1:15
16:30
31:45
46:60
61:75
76

77

78

79

80

81

82

83
84

85
86

87
88

89
90:93
94:97
08:101
102:10
106:10
110
111

112

5

9
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tad

tref
gref

rst
emis

zOma
zol

rib

ustar
qstar
tstar

fh

fq

Radiative temperature of
surface

2 m height air temperature
2 m height air specific
humidity

Canopy stomatal resistance
Averaged bulk surface
emissivity

Effective roughness
Dimensionless height (z/L)
used in Monin-Obukhov
theory

Bulk Richardson number in
surface layer

u* in similarity theory

g* in similarity theory

t* in similarity theory
Integral of profile function
for momentum

Integral of profile function
for heat

Integral of profile function
for moisture

113

114
115

116
117

118
119
120
121
122
123
124
125

126

6.5 Atmospheric Forcing

Table 17: Atmospheric Forcing - forcxy(lon_points,lat_points,nforc)

Internal Name  Description Uint Code No.
pco2m CO; concentration in atmos. (35pa) pa 1
po2m O, concentration in atmos. (20900pa) pa 2
us Wind in eastward direction m/s 3
Vs Wind in northward direction m/s 4
tm Temperature at reference height K 5
gm Specific humidity at reference height kag/kg 6
prc Convective precipitation mm/s 7
prl Large scale precipitation mm/s 8
psrf Atmospheric pressure at the surface pa 9
pbot Atm bottom level pressure (or reference height) pa 10
sols Atm vis direct beam solar rad onto srf W/m? 11
soll Atm nir direct beam solar rad onto srf W/m? 12
solsd Atm vis diffuse solar rad onto srf W/m? 13
solld Atm nir diffuse solar rad onto srf W/m? 14
frl Atmospheric infrared (longwave) radiation W/m? 15
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hu
ht

hg

Observational height of wind
Observational height of temperature
Observational height of humidity

3 3 3

16
17
18

6.6 Fluxes Required by Atmospheric Model or Model Output

Table 18: Model Output in xy Grid Form - fldxy (lon_points,lat_points,nforc, nfldv)

Internal  Description Uint Code
Name No.
Fluxes required by atmospheric models
taux Wind stress: E-W kg/m/s® 1
tauy Wind stress: N-S kg/m/s* 2
fsena Sensible heat from canopy height to atmosphere W/m? 3
Ifevpa Latent heat flux from canopy height to atmosphere W/m? 4
fevpa Eevapotranspiration from canopy to atmosphere mm/s 5
fsenl Sensible heat from leaves W/m? 6
fevpl Evaporation+transpiration from leaves mm/s 7
etr Transpiration rate mm/s 8
fseng Sensible heat flux from ground W/m? 9
fevpg Evaporation heat flux from ground mm/s 10
fgrnd Ground heat flux W/m? 11
sabvsun  Solar absorbed by sunlit canopy W/m? 12
sabvsha  Solar absorbed by shaded W/m? 13
sabg Solar absorbed by ground W/m? 14
olrg Outgoing long-wave radiation from ground+canopy ~ W/m? 15
rnet Net radiation W/m? 16
Xerr Error of water banace mm/s 17
zerr Error of energy balance W/m? 18
rsur Surface runoff mm/s 19
rnof Total runoff mm/s 20
assim Canopy assimilation rate molm?st 21
respc Respiration (plant+soil) molm?st 22
Model state variables
tss Soil temperature K 23-32
wliq Liquid water in soil layers kg/m? 33-42
wice Ice lens in soil layers kg/m? 43-52
tg Ground surface temperature K 53
tlsun Sunlit leaf temperature K 54
tlsha Shaded leaf temperature K 55
Idew Depth of water on foliage mm 56
scv Snow cover, water equivalent mm 57
snowdp  Snow depth m 58
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fsno
sigf
green
lai
sai

albvdir
albndir
albvdif
albndif
emis
z0ma
trad
ustar
tstar
gstar
zol

rib
fm

fh

fq
tref
qref
ulOm
v10m
f10m

us
VS
tm
gm
prc
prl
pbot
frl
solar

Fraction of snow cover on ground

Fraction of veg cover, excluding snow-covered veg
Leaf greenness

Leaf area index

Stem area index

Variables required by coupling with regional models

Averaged albedo [visible, direct]
Averaged albedo [near-infrared, direct]
Averaged albedo [visible, difffuse]
Averaged albedo [near-infrared, diffuse]
Averaged bulk surface emissivity
Effective roughness

Radiative temperature of surface

U* in similarity theory

t* in similarity theory

Q* in similarity theory

Dimensionless height (z/L) used in Monin-Obukhov
theory

Bulk Richardson number in surface layer
Integral of profile function for momentum
Integral of profile function for heat
Integral of profile function for moisture

2 m height air temperature

2 m height air specific humidity

10m u-velocity

10m v-velocity

Integral of profile function for momentum at 10m

Atmospheric Forcing

Wind in eastward direction

Wind in northward direction

Temperature at reference height

Specific humidity at reference height
Convective precipitation

Large scale precipitation

Atmospheric pressure at the surface
Atmospheric infrared (longwave) radiation
Downward solar radiation at surface

A3

m/s

ka/kg

ka/kg
m/s
m/s

m/s
m/s

ka/kg
mm/s
mm/s
pa

W/m?
W/m?

59
60
61
62
63

64
65
66
67
68
69
70
71
72
73
74

75
76
77
78
79
80
81
82
83

84
85
86
87
88
89
90
91
92
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7. Examples of offline simulation

In Section 2, we explained the main scripts related with the model running, most
of them based on the parallel version CoLM, and the serial version running is similar to
this. In fact, most of steps to run the CoLM are summarized in the script files jobclm.csh
and jobclm_single.csh. But in this section, we’ll give two examples on how to run the
CoLM step by step without using the existing scripts, to deepen our understanding of the
model running flow. And in the experiments of this section, we assume the top directory
of the CoLM source code is at /lhome/CoLM, and running the model on Linux or Unix
system based on Intel 1A32 or 1A64 platform, with an Intel Fortran compiler (ifort) and
GNU make tool (gmake or make) installed. If the netCDF format dataset is used, we also
assume the netCDF software package is installed, including its header files and library
files. And users should be familiar with the Linux/Unix shell environments (such as C
Shell, GNU Bourne-Again SHell), also at least one editor tool (such as nano, vim, emacs).

7.1 Single Point Offline Experiment

The single point offline experiment often is very useful to examine the model
performance, for example to validate some improved or newly added land surface
processes. The atmospheric forcing dataset used in single point experiments usually not
very huge, most of them maybe come from the observation. The land surface properties
maybe also have observation values, such as the sand/clay percentage of the soil and land
cover type, which are more accurate and could replace the USGS dataset. Even the initial
soil temperature and soil moisture have the observed values, using these values we could
set the model at a reasonable initial state, and reduce the spin-up period.

Before we compile the model source code and start the simulation experiment, we
could adjust the default model configure file at /nome/CoLM/include/define.h according
to the requirements by setting the different cpp tokens, for example which land cover
category legend is used, whether the initial soil temperature and soil moisture values are
used, or of which format atmospheric forcing is used. In this experiment, we’ll use the
atmospheric forcing data coming along with the default distribution of CoLM, the data is
at the /home/CoLM/data/VAL.DAT.CTRL.INT, which comes from the Valdai Grassland
Site (57.6N 33.1F) in Russia, with a length of 18 years starting from 1962. For the
format of this atmospheric forcing data is ASCII format, we’ll undefine the NCDATA
cpp token in /home/CoLM/include/define.h. For we don’t use the initial soil state values
for this site, we could undefine SOILINI cpp token, also we use the USGS land cover
category legend, and write the history data at every model step. The parallel function is
also disabled for only one model grid involved in single point experiment. Finally we
could get the following define.h (BOX 6):
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BOX 6: EXAMPLE FOR COLM/INCLUDE/DEFINE.H

#undef COUP_ CSM
#undef RDGRID
#undef SOILINI
#define offline
#undef BATS
#undef SIB2
#undef IGBP
#define USGS
#define EcoDynamics
#define LANDONLY
#undef LAND SEA
#undef MAPMASK
#undef NCDATA
#undef PRINCETON
#undef GSWP2
#define WR HOURLY
#undef SPMD

Users could refer to Section 2 of this technical guide to check the exact meaning
of each cpp token. Finished the model configuration file, we could go to each model
source directory and compile the model, executing the following commands (BOX 7) in
Shell environment to compile the surface making program, initial data making program
and the time-looping calculation program, also we copy the produced executable files
into /home/CoLM/run directory.

BOX 7: COMMANDS TO COMPILE THE MODEL

cd /home/CoLM/mksrfdata

make -f Makefile.intel clean
make -f Makefile.intel

cp srf.x /home/CoLM/run

cd /home/CoLM/mkinidata

make -f Makefile.intel clean
make -f Makefile.intel

cp initial.x /home/CoLM/run

cd /home/ColLM/main

make -f Makefile.intel clean
make -f Makefile.intel

cp clm.x /home/ColLM/run
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If all goes smoothly, we’ll get three executable files srf.x, initial.x and clm.x in
/home/CoLM/run directory, which are used to make surface data, initial data and
simulate the land surface processes respectively. If something broken, firstly checking the
model configuration file define.h, whether we set some unreasonable cpp tokens or not;
Then checking Makefile, and making sure we have some useable Fortran 9x compiler;
Finally checking the model source code if users modified some of them.

Now we should create the surface data for the point/site to be simulated. For a
simple running case, we could use the provided USGS land surface data, including the
land cover category, soil category. In the namelist required by the surface making
program (srf.x), we should specify a very small region to cover the point/site to be
simulated, also the exact path name which points to the USGS dataset. Using any editor
tool you like to create the following namelist file (srfdat.stdin) at /home/CoLM/run
directory:

BOX 8: EXAMPLE NAMELIST FILE FOR CREATING SURFACE DATA

&mksrfexp

fmetmask = "!

fmapmask = '!

fgridname = '!

fdemname = '/home/CoLM/rawdata/DEM-USGS.30s'
fmaskname = '/home/CoLM/rawdata/LWMASK-USGS.30s'
flandname = '/home/CoLM/rawdata/VEG-USGS.30s'
fsolaname = '/home/ColLM/rawdata/SOILCAT.30s"
fsolbname = '/home/CoLM/rawdata/SOILCATB.30s'
fsurdat = '/home/CoLM/data/srfdata.valdai’
lon points = 1

lat points = 1

edgen = 57.625

edgee = 33.125

edges = 57.575

edgew = 33.075

nlon metdat = 1

nlat metdat = 1

/

For single point running, we specify the lon_points=1 and lat_points=1, also the
boundaries surround the experiment site: edgen, edgee, edges, edgew, these variables
direct the surface making program to retrieve the exact land cover category and soil
category data of this site from the raw USGS dataset. The meanings of the other variables
could refer to the Section 2 of this User’s Guide.

At this stage, we could execute the following commands to make the surface data:
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BOX 9: EXAMPLE COMMANDS TO CREATE SURFACE DATA

cd /home/ColLM/run

./srf.x < srfdat.stdin >& log.srf

The successful running gives a prompt “Successful in surface data making” at the
end of the log.srf file and a binary surface data at the /home/CoLM/data/srfdat.valdai.
The file log.srf stores all information related with the surface making process.

The second major step to run the CoLM is to make the initial data, which creates
two files: one storing time-constant variables (fhistTimeConst), such as soil physical
attributes; another one storing time-varying state variables (fhistTimeVar), such as soil
temperature and soil moisture. Firstly we create a namelist file required by the initial data
making program. In this namelist file, we should specify the surface data being created in
the above step. Also we should set initial date to start the time-looping calculation, which
must conform to the date of the atmospheric forcing data. Most of information specified
in this namelist will be copied into finfolist file, which later will be used as the input
namelist for the time-looping program. Finally a namelist file named inidat.stdin is
located at /home/CoLM/run, which contains the following clauses:

BOX 10: EXAMPLE NAMELIST FILE FOR CREATING INITIAL DATA

&clminiexp

site = Valdai

greenwich = .true.

start yr = 1962

start jday = 1

start sec = 1800

fsurdat = '/home/CoLM/data/srfdata.valdai’
flaidat = '

fsoildat = !

fmetdat = '"/home/ColLM/data/VAL.DAT.CTRL.INT '
fhistTimeConst = '/home/CoLM/output/Valdai-rstTimeConst'
fhistTimeVar = '"/home/CoLM/output/Valdai-rstTimeVar'
foutdat = '"/home/CoLM/output/Valdai'

finfolist = '"/home/ColLM/run/clmini.infolist"

lon points = 1

lat points = 1

nlon metdat = 1

nlat metdat = 1

deltim = 1800

mstep = 931104
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Then we could execute the following command to make the initial data (BOX 11):

BOX 11: EXAMPLE COMMANDS TO CREATE INITIAL DATA

cd /home/CoLM/run

./initial.x < inidat.stdin >& log.ini

A successful running of the initial data making program gives a prompt “CLM
Initialization Execution Completed” at the end of the log.ini, also other three files:
/home/CoLM/output/Valdai-rstTimeConst, /nome/CoLM/output/Valdai-rstTimeVar and
/home/CoLM/run/cImini.infolist. Users could check log.ini to watch the process of the
initial data making. The file /home/CoLM/run/clmini.infolist contains the namlist used
to run the time-looping program. In this case, it looks like the following example (BOX
12):

BOX 12: EXAMPLE NAMELIST FILE FOR TIME-LOOPING

&clmexp

site = Valdai

flaidat = '

fmetdat = '/home/ColLM/data/VAL.DAT.CTRL.INT '
fhistTimeConst = '/home/CoLM/output/Valdai-rstTimeConst'
fhistTimeVar = '/home/ColLM/output/Valdai-rstTimeVar-1962-001-
01800"

foutdat = '"/home/CoLM/output/Valdai'
lhistTimeConst = 150

lhistTimeVar = 160

lulai = 120

lumet = 140

luout = 170

lon points = 1

lat points = 1

nlon metdat = 1

nlat metdat = 1

numpatch = 2

deltim = 1800

mstep = 931104

/
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Also we should create a flux.stdin file to control the flux variables to export as
history files, the following example will export all flux variables (BOX 13):

BOX 13: EXAMPLE NAMELIST FILE FOR FLUX-FILTER

&flux nml

flux exp= +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16
+17 +18 +19 +20 +21 422 +23 +24 +25 +26 +27 +28 +29 +30 +31 +32
+33 +34 +35 +36 +37 +38 +39 +40 +41 +42 +43 +44 +45 +46 +47 +48
+49 +50 +51 +52 +53 +54 +55 +56 +57 +58 +59 +60 +61 +62 +63 +64
+65 +66 +67 +68 +69 +70 +71 +72 +73 +74 +75 +76 +77 +78 +79 +80
+81 +82 +83 +84 +85 +86 +87 +88 +89 +90 +91 +92

/

Now we could run the time-looping program to do the final single-point
simulation. The commands in BOX 14 show the example:

BOX 14: EXAMPLE COMMANDS TO DO TIME-LOOPING CALCULATION

cd /home/ColLM/run
mv clmini.infolist timeloop.stdin
In -sf flux.stdin fort.7

./clm.x < timeloop.stdin >& log.clm

And the command “In —sf flux.stdin fort.7” is used to redirect the Fortran logical
unit. The running of the time-looping program maybe need some time, after the model
finished, we could check log.clm to watch if some problems occurred. In this case, the
model results is saved at /home/CoLM/output, the model restart files have the form like
“Valdai-rstTimeVar-YEAR-DAY-SECOND?”, history files have the form like “Valdai-
YEAR-DAY-SECOND”, which contain the simulation results. Users could refer to the
GrADS description file at /home/CoLM/graph/flx.ctl to plot the results according to your
requirements.

In the single point experiment, users could also replace the land surface data
derived from USGS raw dataset with the observation values, such as sand/clay percentage,
land cover category, bedrock depth. The easiest way to complete this is to modify the
value of the corresponding variables before the surface making program writes the
surface data, and users could refer to the relevant code fragment in the source file
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/home/CoLM/mksrfdata/mksrfdata.F90. The initial value of the soil temperature and soil
moisture also could be changed, users could refer to the code fragment covered by the
cpp token SOILINI in the file /nome/CoLM/mkinidata/initialize.F90.

7.2 Global Offline Experiment with GSWP2 Dataset

The global offline experiment is similar with the single point offline experiment,
most of the namelist files are also similar, only the number of the model grids and the
atmospheric forcing data has some difference, and the running flow is same. In this
experiment, we’ll skip those similar steps, and only focus on how to prepare the forcing
data for a global offline experiment, using the GSWP2 dataset as an example.

In Section 7.1, the single point offline experiment uses the atmospheric forcing
data of the ASCII format, the time-looping program uses the subroutine GETMET in
/home/CoLM/main/GETMET.F90 source file to handle this type forcing data. But when
using GSWP2 dataset, which is of netCDF format, the subroutine ncdata_read in
/home/CoLM/main/ncdata.F90 is used. Currently this code only support pre-processed
GSWP2 and PRINCETON dataset.

As stated in Section 4, CoLM usually uses a model time step of 30 minutes, and
most of the re-analysis data products have a time interval of 3 hours. To eliminate this
gap, we could do a temporal interpolation for the raw re-analysis data. And in the default
distribution of the parallel version CoLM, some temporal interpolation subroutines based
on Cubic Spline method are provided, these subroutines are not perfect, users are
encouraged to improve them. In this section we’ll explain how to use these subroutines to
per-process the GSWP2 dataset.

Most of the information about the GSWP2 dataset has been stated in Section 4,
here we’ll demonstrate how to interpolate the GSWP2 data and feed them to the CoLM.
We’ll use the short wave solar radiation dataset as an example. Assuming the original
GSWP2 solar radiation dataset is at /home/gswp2/SWdown_srb. We could use the
command ncdump provided with the netCDF software package to check the file
information of these GSWP2 dataset. Now we’ll interpolate the 3-hour interval original
GSWP2 solar radiation data into 30-minute interval, using the interpolation program
provided in the default CoLM distribution. Firstly we compile the interpolation program,
the netCDF package is assumed being install at /usr/local/netCDF directory, the BOX 15
shows the example commands.

BOX 15: EXAMPLE COMMANDS TO COMPILE THE INTERPOLATION PROGRAM
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cd /home/colm/interp/src

ifort -c spline interp.F90

ifort -c¢c -fpp -DGSWP2 -I/usr/local/netCDF/include
data i1i0.F90

ifort -c¢ -fpp -DGSWP2 -I/usr/local/netCDF/include
SW interp.F90

ifort -o SW interp.x spline interp.o data io.o

SW interp.o -L/usr/local/netCDF/lib -lnetcdf

The successful compilation produces the SW_interp.x program, which is used to
interpolate the GSWP2 solar radiation dataset. Now we create an input file to list the
number of files and the variable to interpolate, also the original files” name and the output
files’ name. In original GSWP2 dataset, SWdown is the variable to store the solar
radiation dataset. BOX 16 gives a simple example:

BOX 16: EXAMPLE INPUT FILE TO CONTROL THE INTERPOLATION

1

‘SWdown'’
‘/home/gswp2/SWdown srb/SWdown srbl198207.nc’
‘/home/gswp2/SWdown srb/SWdown srbl198207 30min.nc’

Saving the above content into the file gswp_sw.stdin, and using it as the input file
to the SW _interp.x program, with the executing the command “/SW_interp.x <
gswp_sw.stdin”, we’ll get the solar radiation dataset of 30-minute interval. The
procedures to interpolate other GSWP2 atmospheric forcing dataset are similar, and we’ll
skip them here.

The netCDF files produced by the interpolation program are of the format
required by the ncdata.F90 in time-looping calculation program. Introducing any new
netCDF format data, users should pre-process them according to the requirements stated
in Section 4, the detailed information about the file format, users could refer to the
ncdata.F90 source code file.

With these processed netCDF format GSWP2 atmospheric forcing dataset, we

could repeat the steps in the single point offline experiment, with some little modification
to the namelist files, to run a global offline experiment.
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8. Coupling of CoLM with CSM/ESM

In above several sections, we explained the procedures to make surface data and
initial data, also basic steps to carry out single point or regional/global offline simulations.
When carrying out offline simulations, we need near surface meteorology fields as upper
boundary data to drive land surface model. On the other hand, land surface as a part of
earth system, its surface albedo, evapotranspiration, latent and sensible heat fluxes all
affect the evolution of the upper atmosphere at many different time scales, so the land
surface model becomes an important component in contemporary climate system models
(CSMs) or earth system models (ESMs). In this section, we’ll discuss the basic principles
on coupling CoLM with CSM or ESM, also some modules helping to build an integrated
CSM or ESM. Especially, we’ll use the coupling between CoLM and GCESSM (Global
Change Consortium - Earth System Model) as an example. Before explain the detailed
coupling procedures, we’ll give a brief introduction on the general framework of
contemporary CSM and ESM.

8.1 General framework of CSM/ESM

As the performance of super computer advances rapidly, it becomes possible to
consider more and more physics or chemistry processes in CSM, also increase the spatial
resolution of CSM. With explicit consideration of biogeochemistry cycles in traditional
CSM, especially focusing on terrestrial and marine carbon cycle, even nitrogen,
phosphorus, ecosystems and human earth interactions, CSM evolves to ESM, which
describes the earth climate system more comprehensively and more accurately. At the
same time, CSM and ESM grow into super complex software systems, which push a big
burden on model development and maintenance. In contemporary CSM or ESM, to
simplify the model development and decrease the model complex, model communities
adopt a modular framework to define the whole structure and interactions among
different components. In this framework, different model or component represents a
different part of earth climate system, then all components interact with each other
through a central component to exchange fluxes at interfaces, this central component is
usually called coupler. With this new modular framework, CSM and ESM could also
maintain a good computing scalability on contemporary super computer architecture. The
Figure 7 is a general framework being widely used in contemporary CSM or ESM,
around the central coupler, there’re atmosphere (atm), ocean (ocn), land (Ind), sea ice (ice)
components, each component represents a single model to simulate its part of earth
climate system, and they interact with each other via coupler (cpl) by sending or
receiving its boundary flux to the coupler.

Figure 7: General framework of CSM/ESM
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1

The GCCESM is an Earth System Model which was built up to improve our
understanding of global changes and human-earth interactions (Figure 8). Besides one
central component, GCCESM currently contains four separate models simultaneously
simulating the earth’s atmosphere, ocean, land surface and sea-ice, an ice-sheet
component based on GLIMMER is under coupling. The initial framework of GCCESM is
based on the atmosphere model CAM3.5 from National Center for Atmospheric Research
(NCAR), the ocean model MOM4pl (2009 version) from Geophysical Fluid Dynamics
Laboratory (GFDL), the land surface model CoLM3 from Beijing Normal University
(BNU), the sea ice model CICE4.1 from Los Alamos National Laboratory (LANL), the
coupler and software framework are based on CCSM3.5 from National Center for
Atmospheric Research (NCAR). Lots of further work was integrated into GCCESM by
Global Change Consortium of China after the initial framework was built up. The
College of Global Change and Earth System Science (GCESS) at Beijing Normal
University (BNU), as the founder of the Global Change Consortium of China, contributed
much important work to GCCESM, especially on MOM4pl, CICE4.1, CoLM3
components coupling and biogeochemistry cycle modeling, such as carbon-nitrogen
coupled terrestrial biogeochemistry scheme based on Lund-Postdam-Jena (LPJ) dynamic
vegetation model.

8.2 Coupling with GCCESM

Figure 8: The framework of GCCESM
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As we all know, in offline mode, land model reads near surface atmospheric
forcing data from files provided by model users. But in coupled mode, the near surface
atmospheric forcing fields are simulated by atmosphere model, and the bottom boundary
conditions required by atmosphere model are simulated by land model. To run two
models continuously, they have to exchange fluxes at the interface. Under the framework
of contemporary CSM/ESM, such as GCCESM, land model and atmosphere model don’t
exchange fluxes directly, but send them to coupler, coupler will pass necessary fields to
each component. In this course, coupler could do further work like regridding, mapping ,
fluxes checking and so on in a more general manner. The communications among
different components and coupler usually use Messages Passage Interface (MPI) based
library to establish, send and receive. In the following section, we’ll focus on the
interaction between land component and coupler, and use GCCESM and its land
component CoLM as an example to explain the basic principle on the coupling procedure.

To establish communication with coupler in CoLM, we should add some interfaces
in land model to interact with coupler, such as sending or receiving fluxes or status
variables. Except normal surface temperature, albedo, sensible and latent heat fluxes, land
model should send the river runoff to ocean model to maintain the water mass balance of
the whole earth climate system. The river runoff to ocean was calculated by and River
Transport Module (RTM) in CoLM. The RTM enables the hydrologic cycle to be closed in
global models, and helps to improve ocean convection and circulation simulations, which is
affected by freshwater input. The RTM in CoLM uses a linear transport scheme at 0.5
resolution to route water from each grid cell to its downstream neighboring grid cell. In ESM,
for maintaining the carbon cycle, land model also should send the net ecosystem
exchange (NEE) flux to atmosphere model via coupler to calculate the CO2 concentration,
and receive CO2 concentration of bottom atmosphere layer. All these sending and
receiving functions use same procedures provided by coupler, here we’ll only give a table
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showing which files and interfaces are added in CoLM to wrap complex coupler

procedures.

Table 19: Interfaces added to couple with GCCESM

Files (interfaces) added in main/ directory to couple with GCCESM

colm_cplMod.F90

colm_cpl_init Initialize variables used to pass fluxes to
coupler

colm_cpl_I2a Extract fluxes simulated by land model,
prepare to send them to coupler

colm_cpl_a2l Extract atmospheric forcing fluxes received

by coupler

colm_cpl_exit

Free resources used by coupling

colm_csmMod.F90

csSm_setup Setup communication partially
csm_shutdown Shutdown the communication with coupler
csm_initialize Initialize communication between land

model and coupler

csm_dosndrcv

Check whether to send or receive fluxes

csm_recv Receiving atmospheric status and fluxes
from coupler

csm_send Sending fluxes of land model to coupler

csm_sendalb Sending 4 bands land albedo to coupler at
the first time step.

csm_flxave Average land model fluxes sending to

coupler

csm_restart

Read or write restart information about
coupling between land & coupler.

The following table shows the variables exchanged between CoLM and coupler in
GCCESM, all sending or receiving communication use the procedures listed in the Table

20.

Table 20: Fields exchanged between CoLLM and coupler in GCCESM

Fields exchanged between CoLM and coupler in GCCESM

Sending fields

from land model

taux wind stress: E-W [kg/m/s°]
tauy wind stress: N-S [kg/m/s’]
fsena sensible heat from canopy height to atmosphere

[W/m?]
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latent heat flux from canopy height to atmosphere

Ifevpa [W/m?]
fevpa evapotranspiration from canopy to atmosphere
[mm/s]
swabs net absorbed solar radiation [W/m?]
olrg outgoizng long-wave radiation from ground+canopy
[W/m°]
avsdr averaged albedo [visible, direct]
avsdf averaged albedo [visible, diffuse]
anidr averaged albedo [near-infrared, direct]
anidf averaged albedo [near-infrared,diffuse]
Trad radiative temperature of surface [K]
tref 2 m height air temperature [K]
qref 2 m height air specific humidity [kg/kg]
ScV snow cover, water equivalent [mm]
nee net ecosystem exchange flux [mol C/m?/s]
roff river flux to the ocean (m>/s)
co2_ppmv CO2 concentration of the bottom atmosphere layer
pbot pressure of the bottom atmosphere layer [Pa]
u zonal wind of the bottom atmosphere layer [m/s]
v meridional wind of the bottom atmosphere layer
Receiving from [m/s]
coupler tbot air temperature of the bottom atmosphere layer [K]
shum air humidity of the bottom atmosphere layer [kg/kg]
rainc liquid Convective precipitation rate [kg/m®/s]
rainl liquid Large scale precipitation rate [kg/m?/s]
snowc convective snow rate [kg/m?/s]
snowl large scale snow rate [kg/m®/s]
downward visible direct shortwave radiation flux
swvdr 2
[W/m°]
downward visible diffuse shortwave radiation flux
swvdf 2
[W/m“]
swndr downwardznear-infrared direct shortwave radiation
flux [W/m?]
swndf Downward2 near-infrared diffuse shortwave radiation
flux [W/m?]
Iwdn downward long wave heat flux [W/m?]
dens air density of the bottom atmosphere layer [kg/m°]
z height of the bottom atmosphere layer [m]

To adapt for the communication mechanisms required by coupler, some initial
parts in CoLM time-looping part have to be modifies. The following figure demonstrates
the updated computing flow of the main part of CoLM in coupled mode. In this figure,
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we also included the River Transport Module and LPJ based DGVM scheme, to reflect
the whole structure of CoLM in GCCESM.

Figure 9: Flow Chart of the Time-looping Calculation in Coupled Mode
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