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Models are increasingly used to examine the potential impacts of management and climate change in
agriculture. Our aim in this paper was to assess the applicability of the field-DeNitrification DeComposition
(DNDC) model in Irish agriculture. This study provides the results of that evaluation, which is a prerequisite
for using the model for assessing management impacts in the future. The DNDC model was tested against
seasonal and annual data sets of nitrous oxide flux from a spring barley field and a cut and grazed pasture at
the Teagasc Oak Park Research Centre, Co. Carlow, Ireland. In the case of the arable field, predicted fluxes of

ﬁ?{!gﬁgdg;dde N,0 agreed well with measured fluxes for medium to high fertilizer input (70-160 kg N ha~') but poorly
DNDC model described those fluxes from zero fertilizer treatments. In terms of cumulative flux values, the relative
Arable deviation of the predicted fluxes from the measured values was a maximum of 6% for the highest N fertilizer
Pasture inputs but increased to 30% for the medium N and more than 100% for the zero N fertilizer treatments. There

Irish agriculture is a linear correlation of predicted against measured flux values for all fertilizer treatments (r* = 0.85) but the

model underestimated the seasonal flux by 24%. Incorporation of literature values from a range of different
studies on arable and pasture land did not significantly improve the regression. The description by DNDC for
measured fluxes of N,O from reduced tillage plots was poor with underestimation of up to 55%.
For the cut and grazed pasture the relative deviations of predicted to measured fluxes were 150 and 360% for
fertilized and unfertilized plots. A sensitivity analysis suggests that the poor model fit is due to DNDC
overestimating WFPS and the effect of initial soil organic carbon (SOC) on N,O flux. As the arable and
grassland soils differed only in SOC content, reducing SOC of the grassland field to that of the arable field
value significantly improved the fit of the model to measured data such that the relative deviations decreased
to 9 and 5% respectively. Sensitivity analysis highlighted air temperature as the main determinant of N,O flux,
an increase in mean daily air temperature of 1.5 °C resulting in almost a 65% increase in the annual
cumulative flux. This is interesting as with future global warming, N,O flux from the soil will have a strong
positive feedback. It can be concluded that DNDC is unsuitable for predicting N,O from Irish grassland due to
its overestimation of WFPS and effect of SOC on the flux.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction cultivated soils are increased N inputs by mineral fertilizers, animal

wastes and biological N fixation (IPCC, 1996, 2007). Other factors
which affect N,O emissions are temperature, moisture, crop type,
fertilizer type, soil organic carbon content, soil pH, tillage and soil

Nitrous oxide contributes to climate change by virtue of having a
global warming potential (GWP) 298 times greater than that of carbon

dioxide (IPCC, 2007). The atmospheric concentration of this green-
house gas has increased from approximately 275 ppb in pre-industrial
times to a present day concentration of 314 ppb (Houghton et al.,
1996; IPCC, 2007). Agricultural land is the most important source of
N,O emissions, contributing approximately 46-52% of the global
anthropogenic N, O flux (Mosier et al., 1998; Olivier et al., 1998; Kroeze
et al., 1999). Primary reasons for enhanced N,O emissions from
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texture (Dobbie et al., 1999; Stehfest and Bouwman, 2006; IPCC, 2007;
Metay et al., 2007).

Management can influence soil fertility directly through fertilizer
inputs (Bouwman, 1996; Makarov et al, 2003) and indirectly via
management-induced changes in plant composition (Collins et al., 1998;
Patra et al,, 2006) and consequently increase N,O flux from soils. For
example mowing and grazing accelerate the N cycle (Bardgett et al.,
1998; Giisewell et al,, 2005) and encourage increased above- and below-
ground plant growth (Leriche et al., 2001) and root exudation (Lipson
and Schmidt, 2004). Plants in mown grasslands must complete their life
cycle relatively early in the season, thus the recycling of roots from early-
season species in mown fields boosts soil nutrient contents sooner than
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in un-mown fields (Bardgett et al., 1998). Mowing enables short-lived
herbs, that exploit early-season ecological niches (Louault et al., 2005),
to flourish, and grazing reduces the dominance of grasses in favor of
short-lived rosette species (Bullock et al., 2001).

National inventories of N,O fluxes from agricultural soils as
required by signatory countries to the United Nations Framework
Convention of Climate Change (UNFCC), are mainly derived from the
use of the default IPCC Tier 1 method, where 0.9-1.25% of applied
inorganic nitrogen to agricultural soils is assumed to be released to the
atmosphere as nitrous oxide-N (Bouwman, 1996; IPCC, 1997, 2000,
2007). This standard reporting procedure has advantages in collating
annual inventories but may mask significant variations in emission
factors (EFs) on a regional scale (Schmid et al., 2001; Laegreid and
Aastveit, 2002; Flynn et al., 2005). For instance in Ireland, published
EFs derived from field measurements of N,O using either eddy
covariance or static chamber methods vary depending on soil type,
land management, climate and year and range from 3.4% for a
grassland in Cork to 0.7 to 4.9% for Carlow and Wexford grasslands
(Hsieh et al., 2005; Hyde et al., 2006; Flechard et al., 2007).

Because of the importance of nitrous oxide emission for global
warming, regional or even global emission estimates are needed for
policy and decision makers. Given the considerable expense of
establishing and maintaining relevant flux measurement sites, the
use of simulation models to estimate N,O fluxes from agricultural
soils, using soil and climate data, has obvious benefits. Modelling also
allows the complex links between soil physical, chemical and
microbial processes that underpin nitrification, denitrification and
decomposition to be examined. Models can simulate the processes
responsible for production, consumption and transport of N,O in both
the long and short term, and also allow spatial simulation (Willams
et al,, 1992).

Simulation models range from simple empirical relationships
based on statistical analyses to complex mechanistic models that
consider all factors affecting N,O production in the soil (Li et al., 1992;
Frolking et al., 1998; Stenger et al., 1999; Freibauer and Kaltschmitt,
2003; Roelandt et al., 2005; Jinguo et al., 2006). These factors include
soil moisture, soil temperature, carbon and nitrogen substrate for
microbial nitrification and denitrification which are critical to the
determination of N,O emissions (Cho et al., 1979; Batlach and Tiedje,
1981; Frissel and Van Veen, 1981; Tanji, 1982; Leffelaar and Wessel,
1988). One widely used mechanistic model is DeNitrification DeCom-
position (DNDC) developed to assess N,O, NO, N, and CO, emissions
from agricultural soils (Li et al., 1992, 1994; Li, 2000). The rainfall
driven process-based model DNDC (Li et al., 1992) was originally
developed for USA conditions. It has been used for simulation at a
regional scale for the United States (Li et al., 1996) and China (Li et al.,
2001). Advantages of DNDC are that it has been extensively tested and
has shown reasonable agreement between measured and modelled
results for many different ecosystems such as grassland (Brown et al.,
2001; Hsieh et al., 2005; Saggar et al., 2007), cropland (Li, 2003; Cai
et al., 2003, Yeluripati et al., 2006; Pathak et al., 2006; Tang et al.,
2006) and forest (Li, 2000; Stange et al., 2000; Kesik et al., 2006). The
model has reasonable data requirement and is suitable for simulation
at appropriate temporal and spatial scales.

The Field-DNDC model contains four main sub-models (Li et al.,
1992; Li, 2000); the soil climate sub-model calculates hourly and daily
soil temperature and moisture fluxes in one dimension, the crop growth
sub-model simulates crop biomass accumulation and partitioning, the
decomposition sub-model calculates decomposition, nitrification, NH;
volatilization and CO, production, whilst the denitrification sub-model
tracks the sequential biochemical reduction from nitrate (NO3) to NO3,
NO, N,0 and N, based on soil redox potential and dissolved organic
carbon.

This paper presents a field evaluation of DNDC for an Irish sandy
loam soil under both arable and grassland crops with different
fertilizer and tillage regimes. Results are discussed in terms of the

suitability of this model for estimating annual and seasonal fluxes of
N0 from Irish agriculture.

2. Materials and methods
2.1. Experiments

Measurements of N,O flux were carried out for a spring barley field
from April to August for two consecutive seasons (2004/05), and for a
cut and grazed pasture from October 2003 to November 2004. Both
fields were located at the Oak Park Research Centre, Carlow, Ireland
(52°86'N, 6°54' W). The arable field was seeded with spring barley (cv.
Tavern) at a density of 140 kg ha~ ! and managed under two different
tillage regimes; conventional tillage where inversion ploughing to a
depth of 22 cm was carried out in March, 5 weeks prior to planting, and
reduced tillage to a depth of 15 cm which was carried out in September
of the year before. The field has been used for cereals production for the
past 15 years and as cropland for the past 50 years.

The cut and grazed pasture had been permanent grassland for at
least the past 80 years and was ploughed and reseeded in October 2001
with perennial ryegrass (Lolium perenne L., cv Cashel) at a density of
13.5 kg ha~ ! and white clover (Trifolium repens L., cv Aran) at a density
of 3.4 kg ha™ . Daily minimum and maximum air temperature (°C) and
rainfall in (mm) were recorded at the Teagasc Research Centre
Weather Station (Met Eireann). Initial soil properties and climate
factors of both sites are summarized in Table 1.

For the spring barley, in 2004, three rates of N-fertilization zero: (Np),
70 (N;) and 140 (N,) kg N ha™ !, were applied once on the 27th of April.
In 2005, two fertilizer applications took place on the 12th of April zero
(No), 53 (N;) and 106 (N,) kg N ha~ !, and on the 10th of May zero (Ny),
26 (N;) and 53 (N;) kg N ha—'. The total amount of N-fertilization
applied in 2005 was therefore zero (No), 79 (N;) and 159 (N>) kgNha™ 1.
Nitrogen fertilizer was split in the second year to cover all possible N
application management recommended for the field. Application of zero
fertilizer started from 2003 until now but the field had received the
recommended field rate of fertilizer 140-160 kg N ha™! before 2003.
Experimental design was a complete randomized plot design with four
replicates.

For the cut and grazed pasture, nitrogen fertilizer was applied at a
total rate of 200 kg N ha— ! y~ ! divided into two applications of 128 and

Table 1
DNDC model input data for both the spring barley and the pasture fields.

Spring barley field Pasture field

Climate data
Latitude (degree) 52°86' N 52°86' N
Yearly maximum of average 13 13
Daily temperature (°C)
Yearly minimum of average 4.0 4.0
Daily temperature (°C)
Yearly accumulated precipitation (mm). 792 792
N concentration in rainfall (mg N 1= ') 0.001* 0.001*
Atmospheric CO, concentrations (ppm) 380" 380"
Soil properties (0-10 cm depth)
Vegetation type Barley crop Moist pasture
Soil texture Sandy loam Sandy loam
Bulk density (g cm ™) 14 1.0
Clay fraction 0.19* 0.34*
Soil pH 7 73
Initial organic C content at surface soil ~ 0.019 0.038
(kg Ckg™1).
Harvest Grain harvest, mulch/till ~ Grazing/cutting
Soil tillage Conventional and reduced None
WEPS at field capacity 0.68 0.87
WEPS at wilting point 0.12 0.09
Depth of water-retention layer (cm) 100* 100"
Slope (%) 0.0 0.0

*Default values.
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72 kg N ha~! on the 2nd of April and the 27th of May respectively.
Separate areas of the field were kept unfertilized as control plots.
Fertilizer was applied in the form of calcium ammonium nitrate (CAN).
Fertilized plots were replicated four times while control plots were
replicated three times. Silage cutting took place once, on the 15th of May
and cattle (beef) grazing (extensive) was from July to November 2003,
and then from July to November 2004 with stocking rate of 2 cattle ha™ .

2.2. Field N>O fluxes

Nitrous oxide fluxes were measured using the methodology of
Smith et al. (1995). Chambers consisted of three parts: a 52x52x 15 cm
high square collar inserted permanently in the soil over which a
50x50x30 cm high lid with a plastic septum could be sealed in place
for gas sample collection. After the lids were in place an initial gas sample
was taken and then a second and third at 30 and 60 min, respectively. In
order to cover most of the crop growth period/year we sampled every
week and more intensively (twice/week) following fertilizer application.

304 * @
201 - ee L]

101 ® & G o [ ] -

g
0 Senn QOOO m

N,O emissions (gN,O-N ha'd™"y

24-Mar 23-Apr 23-May 22-Jun 22-Jul 21-Aug

354 C

10- * ammme oo
B .

-10
24-Mar

N,O emissions (gN,O-N ha™ld™!)

23-Apr 23-May 22-Jun 22-Jul 21-Aug

304 L
251

204 ]

,0-Nha'ld!)

N
S

:
L)
L)
L ]

N,O emissions (|
=
v

gl I
-10 T — T T d
24-Mar 23-Apr 23-May 22-Jun 22-Jul 21-Aug

Fig. 1. Comparison of model-simulated (®) and field measured (

Previous studies of N,O fluxes using static chambers have sampled at
frequencies ranging from 1 h to 2 weeks (Moge et al., 1999; Choudhary
et al,, 2002; Simek et al., 2004; Flechard et al., 2007). Samples were taken
in the morning between 9 and 11 a.m. Samples were taken using a 60 ml
gas-tight syringe after flushing of the syringe to ensure adequate mixing of
air within the chamber. All 60 ml of the sample was then injected into a
pre-evacuated 3 ml gas-tight vial with a vent needle inserted into the top,
and stored until analysis. N,O flux was measured using a gas chromato-
graph (Shimadzu GC 14B, Kyoto, Japan) with electron capture detection
(column and detector temperatures were 30 and 300 °C respectively).

2.3. Soil moisture

For both fields and each treatment, four soil samples were taken at a
depth of 0-20 cm at every gas-sampling occasion. Samples were
weighed, oven dried to constant mass at 105 °C, and reweighed again.
The dry weight and differences between fresh and dry weight were used
to calculate the both gravimetric and volumetric water content. Average
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and 2005 (B, D, F). (Error bars for measured values are =+ standard error). Arrows show time of fertilizer application.
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bulk density was 1.4 g cm™ . Water filled pore space (WFPS) is calcu-
lated by WFPS = (soil gravimetric water content x bulk density) /
[1 — (bulk density / particle density)] (Linn and Doran, 1984).

2.4. DNDC model

In this study the DNDC model (version 9.2; http://www.dndc.sr.
unh.edu/) was tested for both the arable field and the cut and grazed
pasture. All field management variables, including grain yield, fertilizer
application and tillage system (where reduced tillage was defined as
disk or chisel ploughing to 10 cm) were input into the model. Soil
properties and climate input data are summarized in Table 1. For the
arable field model testing was possible only for the growth period of the
crop, whilst for the cut and grazed pasture 12 months of data were used.
The model testing was carried out by (1) comparing the measured and
modelled temporal pattern of weekly N, O flux values, (2) comparing the
measured and modelled cumulative N,O fluxes (using weekly values),
and (3) comparing the measured and modelled emission factors.
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The relative deviation (y) of the modelled flux from measured flux
values was calculated by the following equation:

Y = (Xs — Xo) /X x 100,

where Xp and Xs are the measured and modelled fluxes respectively.
Annual and seasonal cumulative fluxes for DNDC outputs were
calculated as the sum of simulated daily fluxes (Cai et al., 2003). EFs
for the modelled data were calculated by subtracting cumulative
DNDC flux data for unfertilized soils from that of the fertilized soils
and dividing by the N fertilizer input. Sensitivity analysis was carried
out by varying a single determinant factor whilst keeping other factors
constant for one annual cycle of the model.

3. Results and discussion

Climate and soil input variables for DNDC are listed in Table 1. Field
data measurements were used for all of the variables listed except for
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Fig. 2. Comparison of model-simulated (®) and field measured (O) N,O flux from the high (upper), medium (bottom) and low (lower) fertilized reduced tillage in 2004 (A, C,E) and
2005 (B, D, F). (Error bars for measured values are 4 standard error). Arrows show time of fertilizer application.
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atmospheric CO,, rainfall N, clay fraction and depth of the soil water
retention layer. Here default values were used. Collectively, DNDC was
better at predicting N,O fluxes for high inputs of N fertilizer (>140 kg
N ha™!) than for zero or low N input treatments (0-70 kg N ha='). In
addition the model appeared to be unduly sensitive to the influence of
soil organic carbon content.

3.1. Arable field

Measurements of N,O flux were limited to the growth period of
the barley crop hence annual estimates of flux were not produced.
Figs. 1-3 relate to a comparison of the modelled and measured fluxes
for 2004/05 as either daily values (Figs. 1 and 2), or cumulative flux
(Fig. 3). At limited mineral N in the soil, DNDC had no response to
rainfall distribution (Fig. 4). This was clear for 2004 where early N,O
flux peaks were missed (Fig. 3). However, at high mineral N, some flux
peaks were coincided with high rain events (Dobbie et al., 1999),
though the relationship was inconsistent. In general the temporal
pattern of N,O flux was different between modelled and measured
data, DNDC extending the influence of added fertilizer over a wider
time period and producing smaller peaks. This is more pronounced for
the higher fertilizer treatments in 2004 than in 2005 (Figs. 1A, 2A and
C) and can be clearly seen in the cumulative flux plots (Fig. 3A and B).
This discrepancy between the years may be related to DNDC
overestimating the water filled pore space (WFPS) in 2004 as opposed
to 2005, WFPS being a critical determinant of N,O flux at the time of
fertilizer application (Keller and Reiners, 1994; Ruser et al., 1998;
Dobbie and Smith, 2001). According to Frolking et al. (1998) WFPS is a
key requirement for a reliable simulation of N,O. Here, increasing
WFPS may reduce the contribution of nitrification and increase
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denitrification (Li, 2000; Li et al., 2000). This is illustrated in Fig. 5A
where modelled WEPS values were consistently higher than measured
values in 2004, with maximum differences of 25-30% being recorded.
In comparison, modelled values for 2005 (Fig. 5B) were closer to
measured values with maximum differences of only 13-16%.

The tillage options provided by DNDC do not allow the reduced,
non-inversion tillage used in our study to be fully described. In
contrast to the conventional tillage plots, DNDC significantly under-
estimated the N,O flux from the reduced tillage plots for the medium
and higher fertilizer treatments by up to 55% (Fig. 3B and D). This may
not be critical for modelling N,O fluxes from Irish agriculture as
reduced cultivation and direct drilling of cereal crops represents less
than 10% of arable land, <40,000 ha (Fortune et al., 2003; ECAF, 2004).

Cumulative fluxes from sowing to harvest are given in Table 2.
Modelled fluxes for the high fertilizer inputs agreed with field measured
values, giving the smallest relative deviations from field data of — 1 and
—6%. These deviations increase significantly as fertilizer input is
reduced. The largest % deviation, and hence the worst fit was obtained
for the zero fertilizer treatments, with relative deviations of —35 to
more than 5000% calculated. Clearly DNDC is best suited for medium to
high N input treatments and does not account for negative flux values
that can occur in low to zero N input treatments where the soil may act
asasink for N,O (Ryden, 1981; Clayton et al,, 1997). Similar DNDC results
for high and medium N fertilizer inputs have been reported for rice fields
by Zheng et al. (1999) (381 kg N ha™'; 8% deviation ), for maize fields by
Crill et al. (2000) (181 kg N ha™"'; 3.5% deviation), for grass by Hsieh
et al. (2005) (337 kg N ha™'; 33% deviation) and for barley fields by
Flessa et al. (1995) (50 kg N ha™'; 36% deviation). However, these
observations are not consistent in the literature. In contrast to our results
far better agreements between modelled and measured flux values have
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Fig. 3. Comparisons of cumulative model-simulated (solid symbol) and field measured (open symbol) N,O fluxes from the high (®), medium (M) and low (A) fertilized plots in 2004

and 2005 for conventional (A and C) and reduced (B and D) tillage system.
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been obtained for low to zero N inputs by Terry et al. (Pahokee muck soil;
rainy season; 1981), Beheydt et al. (Belgium; sandy loam soil; rainy
season; 2007) and Qiu et al. (China; paddy soil; low precipitation;
2009).

The wide range of CAN fertilizer addition in this study allowed a
linear regression of modelled vs. measured cumulative fluxes which
suggest for the overall data set that DNDC is reflecting observed
values. This is illustrated in Fig. 6, where observed and modelled data
from Table 2 have been plotted. Here, because there is no significant
difference between conventional and reduced tillage, flux data of both
tillage were pooled together. The regression (y=0.78x—6.5)
accounts for 85% of the variation in the data, but with the simulated
values (y) underestimating measured values (x) by 24%. Similar data
cited by De Vries et al. (2005), from a range of published studies on
grasslands and cereal systems, are also presented in Fig. 6. Data from
our study fit well within this group and improve the slope of the
regression to y = 1.1x 4+ 0.35, (> = 0.76).

3.2. Pasture field

Our results suggest that DNDC is unduly sensitive to initial soil
organic carbon content. Measured and modelled cumulative fluxes of
N,O from the cut and grazed pasture are shown in Table 3 (annual)
and highlight the poor fit of the model where high relative deviation
values were calculated. This poor fit of DNDC for grassland was also
observed by Beheydt et al. (2007) where 22 long-term measurements
of direct N,O emissions from soils in an intensive agriculture were
used to validate DNDC. The only major difference between our arable
and the cut and grazed pasture soils is that the latter has significantly
higher organic carbon content (0.038 as opposed to 0.019 kg C kg ™!
dwt). Changing the initial soil organic C content for the model to the
lower values of the arable soil greatly improved the fit of the model to
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Table 2
Observed and modelled seasonal N,O emissions from the arable conventional and
reduced tillage plots.

Cumulative emissions for cropping season (g N,O N ha—') Relative

2004 season Treatment Observation Model Difference deviation (%)

Conventional tillage 140 kg Nha—' 788 780 -8 —1
70 kg N ha! 269 350 +81 30
0 kg Nha™' 2 110 +108 5400

Reduced tillage 140 kgNha—! 978 590 —388 —40
70 kg N ha! 494 220 —274 —55
0 kg Nha™' 87 30 —57 —66

2005 Season

Conventional tillage 159 kg N ha—' 1053 993 —60 —6
79 kg N ha—! 563 450 —113 —20
0 kg Nha ' 170 110 —60 —-35

Reduced tillage 159 kg Nha—! 1058 793 — 265 —25
79 kg N ha—! 567 320 —247 —44
0 kg N ha~' 135 10 —125 —93

the observed values (Fig. 7). By doing so, initial concentration of soil
nitrate is changed from 11.4 to 5.82 mg N kg~ ! and that of ammonium
is reduced from 1.14 to 0.582 mg kg~ . Soil denitrification was reduced
and consequently N,O flux for the fertilized plots was reduced to
2797 ¢ N,O N ha™ ! (a relative deviation of 9%) and that for the control
plots to1110 g NO N ha™! (a relative deviation of 5%) as shown in
Table 3. This would question the present algorithms in the model
describing the effect of soil organic carbon content on N,O flux. The
model is very sensitive to SOC (Li et al., 1996, 2001; Beheydt et al.,
2007); a 20% increase in SOC corresponds to a 58% increase in N,O flux
(see below). Soil organic matter enhances the soil's physical, chemical
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and biological properties in a complex way. The increase of soil organic
matter has a great effect on N,O flux because certain organic matter
pools correlate with microbial activity. For example, the availability of
carbon in soils is known to strongly influence the activity of micro-
organisms and as a consequence has a major effect on the cycling and
turnover of nutrients (Jandl and Sollins, 1997; Magill and Aber, 2000;
Marschner and Bredow, 2002; McDowell, 2003).

Similar over-estimates of the effects of initial SOC by DNDC have
also been reported by Li et al. (1992), Brown et al. (2002) and Hsieh
et al. (2005). The high simulated N,0 peaks, for both the control and
fertilized plots, observed around February 2004, after changing SOC
(Fig. 7), may be mainly because of the model overestimating WFPS
(Beheydt et al., 2007) as shown in Fig. 8. Water filled pore space leads
to high microbial activity by affecting the population of aerobic and
anaerobic micro-organisms in the soil (Linn and Doran, 1984).

In, this study, however, the soil types of both the arable and pasture
fields were very similar physically and chemically, except for soil organic
carbon, and were both free draining soils, over the same period, higher
cumulative N, O fluxes were released from the pasture compared with the
arable field. These were observed from the field measurements and
predicted by DNDC. Differences in fluxes here, were attributed to land use
which is an important driving factor for carbon and nitrogen dynamics of
landscape ecosystems (Priess et al., 2001) and therefore can have a
significant impact on N,O flux (IPCC, 2000). Our aim in this paper was to
assess the applicability of the DNDC model in Ireland so that in the future,
it can be used to assess the impact of various alternative management
strategies under future climate. This study provides the results of that
evaluation, which is a prerequisite for using the model for assessing
management impacts. A detailed description of management impacts on
N,0 emissions in Ireland can be found in Abdalla et al. (2009).

3.3. Sensitivity analysis

Given the reasonable fit of the model to the conventional tillage data,
the sensitivities of the model outputs for the arable field to changes in
soil characteristics, fertilizer N and climate were also investigated. The
following scenarios were chosen:

(1) changes in bulk density

(2) changes in initial SOC

(3) changes in fertilizer use

(4) changes in rainfall and air temperature.

The DNDC model appears highly sensitive to changes in bulk density
and as mentioned previously, SOC. Increasing the bulk density of the soil
from 14 to 1.8 g cm™ !, an increase of 29%, resulted in a more than
equivalent increase in both the apparent rate of N released by deni-
trification (42%) and the predicted N,O flux (62%) (Table 4). Bulk density
reduces macro pore space and increase WFPS and consequently leads to
high microbial activity (Abassi and Adams, 2000). Thus, according to
DNDC, any management treatment that increases the bulk density of the
soil, such as reduced tillage, would also significantly increase N,O flux, as
has been observed by Aulakh et al. (1984), Baggs et al. (2003) and Six
et al. (2004). Reduced tillage is also associated with increases in SOC

Table 3
Observed and modelled annual N,O emissions from the cut and grazed pasture (2004).

Seasonal emissions (g N,O N ha— ') Relative

Treatment Observation Model Difference deviation (%)
Before adjusting SOC

200 kg N ha—! 2573 6613 4040 157

0 kg Nha=! 1054 3970 2926 360

After adjusting SOC

200 kg N ha—! 2573 2797 224 9
0kgNha~! 1054 1110 56 5
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(Smith, 2004, 2005; Alvaro-Fuentes et al., 2008). Increasing the baseline
SOC value by 20% increases N,O flux by 65%. Hence for at least two
associated aspects of reduced tillage, N,O flux has been predicted to
increase significantly, questioning the use of this management technique
as a means of lowering total greenhouse gas emissions in the soil we
studied here.

Model outputs were also highly sensitive to changes in fertilizer type,
with a switch from the principal form of N fertilizer used in cereal
production in Ireland (CAN) to urea or ammonium sulphate fertilizers
resulting in predicted increases in N,O flux of 50 and 55%, respectively.
These flux increases from ammonium-based fertilizer and urea are in
agreement with Clayton et al. (1997), but in contrast to other studies
done by Velthof et al. (1997) and Thornton et al. (1998). In our situation,
where the soil pH is very high (7), application of ammonium-based
fertilizer and urea may increase soil nitrification (Harrison and Webb,
2001) and consequently the N,O flux. Model outputs, however, proved
the most sensitive to changes in air temperature. Here, an increase of
1.5 °C in the daily average air temperature resulted in a 62% increase in
N,O flux and a 57% increase in the rate of total N released by soil
denitrification. Temperature increases soil microbial population response
to other perturbations such as fertilization and rainfall (Bramley and

White, 1990). This is interesting as with the future global warming, N,O
flux from soil will have strong positive feedback. In contrast, changes in
rainfall of +20% resulted in changes in N,O flux of 10-15% (Table 4).
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Fig. 8. Comparison between the measured (O) and modeled (@) WFPS from the cut and
grazed pasture in 2003/04. (Error bars for measured values are +standard error).
Arrows indicate time of N fertilizer application.
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Table 4
Sensitivity of DNDC to changes in soil characteristics, management and climate for the
spring barley field (conventional tillage, 2004).

Scenario Mineralization Annual N,O flux  Denitrification
(kgNha='y™ ') (kgNha 'y ') (kgNha 'y 1)
*Baseline 2574 1.64 531
Bulk density (g cm™ )
1 194 0.67 2.72
14 290.8 211 5.67
1.8 324.2 2.65 7.53
Initial soil organic carbon
+20% 305.8 2.59 7.52
—20% 2111 0.69 2.79
Fertilizer type
Urea 2574 246 7.04
Ammonium sulphate 2574 2.54 714
Rainfall
+20% 2671 1.76 5.78
—20% 2445 141 4.25
Air temperature
+20% 269.9 2.65 8.36
—20% 243.2 0.93 3.49

*Baseline scenario: bulk density 1.4 g cm ™3, SOC 0.0194 kg C kg~ ', fertilizer applied and
timing (140 kg N/ha CAN, on the 27th of April), annual average max. and min. air
temperature 13.7 and 4.8 °C and average daily precipitation 2.2 mm and soil tillage to
22 cm depth carried in March 5 weeks before planting.

For the arable field, emission factors for the modelled data
calculated on daily flux ranged from 0.3 to 0.6% of the fertilizer N
applied, whereas measured EFs ranged from 0.4 to 0.7% of the fertilizer
N applied. Modelled and measured EFs are comparable, but are both
significantly lower than the IPCC default value of 1-1.25% (Bouwman,
1996; IPCC, 2006). Here, due to our system limitation, the post harvest
flux of N,0O is not included in this calculation, which would change the
flux budget and values of EFs (Smith et al., 1998; Syvdsalo et al., 2004).
Literature measured EF values for cereal crops are extremely variable,
ranging from 0.2 to 8% (Eichner, 1990; Kaiser et al., 1998; Smith et al.,
1998, Dobbie et al., 1999; Crutzen et al., 2008) and are dependent upon
temperature, moisture and soil type (Flechard et al., 2007). For the
pasture, a higher annual EF of 1.37% was calculated from the simulated
flux before SOC correction; however a value of 0.88% was calculated
following SOC correction. This is comparable to the calculated EF of
0.83% for the measured flux.

4. Conclusions

In its present form DNDC is suitable for simulation of C and N
dynamics in medium to high N input systems, but less suitable for low
input systems, with the accuracy of the prediction being highly
dependent on the level of fertilizer application. High fertilizer inputs
produce low relative deviations between modelled and measured fluxes
(~1-6%) for the arable field under conventional tillage. Prediction of
N,0 fluxes from reduced tillage plots however, was poor, with DNDC
consistently underestimating measured field values. Here relative
deviations ranged from — 20 to —93%. One major disadvantage of the
model was the limited choice of tillage input options available, none
describing the reduced tillage treatment used in this study. Prediction of
N,O0 fluxes from the cut and grazed grassland was also poor with model
outputs significantly overestimating measured field values giving
relative deviations of 150-360%. The high simulated N,O peaks, for
both the control and fertilized plots, observed around February 2004,
after changing SOC, were considered to be because of the model
overestimating WEFPS. Our sensitivity analysis suggests that DNDC
overestimates the effect of SOC content on nitrification and denitrifica-
tion. By reducing the SOC input values to those of the cereal field we
could significantly improve the fit of the model, reducing relative
deviation scores to approximately 5-10%. Sensitivity analysis also
highlighted air temperature as the main determinant of N,O flux, an
increase in mean daily air temperature of 1.5 °C resulting in almost 65%

increase in the annual cumulative flux. This is interesting as with the
future global warming, N,O flux from soil will have strong positive
feedback. If the DNDC model is to be used for greenhouse gas accounting
in Ireland, or for examining the impact of management and climate
change in Irish agriculture, model performance will need to be improved
for grassland and low input systems.
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