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outputs (BACCO) with the Gaussian emulation machine for sensitivity analysis software (GEM-SA) to
conduct a long-term SA of DNDC for predicting the annual change of soil organic carbon (dSOC), nitrous
oxide emission (N20) and grain yield of spring wheat. Twenty seven non-weather input parameters with
wide ranges were selected for SA using weather data recorded from Three Hills, Alberta over 86 years
Keywords: (1921—-2006). The SA had two steps: 1) a preliminary BACCO GEM-SA was conducted to identify a more
DNDC accurate emulator sampling method and to screen out parameters with insignificant influence on model
Long-term outcomes; and 2) final BACCO GEM-SA was conducted with optimal input design set for emulator
Global sensitivity analysis training runs varying only the significant input parameters. Results indicated that the Maximin Latin
BACCO GEM-SA Hypercube sampling method outperformed the LP-t method with higher emulator accuracy. Most of the
27 input parameters contributed little to the three outputs by the first step BACCO GEM-SA. In the second
step of BACCO GEM-SA there were only three (in the case of dSOC) and six (in the cases of N,O and yield)
input parameters whose influence contributed to more than 10% of the total output variances by their
total effects. Among the selected parameters, initial soil organic carbon and clay content are very
important and were important in determining results for all three outputs. Sensitivities of some
parameters, such as clay content and urea fertilizer amount changed dramatically over the years. This
indicates that a single year SA may overestimate or underestimate a long-term parameter effect on the
model prediction. The two-step procedure with the BACCO GEM-SA method improved the accuracy of SA
and provided important information for model validation and parameterization.

Crown Copyright © 2013 Published by Elsevier Ltd. All rights reserved.

1. Introduction and climate variability. DeNitrification and DeComposition (DNDC)
is a process-oriented simulation model that was initially developed

Developing ecosystem models is essential for the assessment of for predicting carbon sequestration and trace gas emissions from
agricultural best management practices to address climate change agricultural soils in the United States (Li et al., 1992a, 1994; Palosuo
etal,, 2012). In recent years, it has been tested by many researchers

Abbreviations: DNDC, denitrification and decomposition; SA, sensitivity analy- worldwide with promising results for simulating the impacts of
sis; GSA, global sensitivity analysis; BACCO, Bayesian analysis of computer code carbon sequestration on net greenhouse gas emissions (Grant and
outputs; GEM-SA, Gaussian emulation machine for sensitivity analysis. 7 . .
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fax: +1 306 7787220. crop growth and yield (Britz and Leip, 2009; Qin, 2005; Tonitto
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2004a), and soil nitrogen leaching (Li et al., 2006, 2009; Nakagawa
and Shinogi, 2006; Tonitto et al., 2007a). This model is currently
being applied for greenhouse gas inventory or mitigation work in
North America, Europe, Asia, and Oceania. In the International
Workshop on Global Change for Asia Pacific Region in 2000, DNDC
was designated as one of the biogeochemical models applicable for
the Asia Pacific regions (Qiu et al., 2005).

Sensitivity analysis quantifies the impact of variation in input pa-
rameters on the variability of model outcomes. Input parameter un-
certainty results from many sources including measurement error,
absence of information, and incomplete mechanistic understanding.
This uncertainty imposes a limit on our confidence in the response or
output of a model. Sensitivity analysis allows us to determine the key
parameters that have the greatest influence on the outputs, the
necessary level of accuracy for a parameter to make the application
valid, and the parameters which model outcomes are not sensitive to.
It can also be used to verify and validate the model (Hamby, 1994) and
to provide insight about the robustness of model results to assist de-
cision making (Manheim, 1998; Phillips et al., 2000; Saltelli et al.,
2000b). Without sensitivity analysis, one does not know which in-
puts contribute most to output values and their uncertainty. Moreover,
without sensitivity analysis, parameters that are not well understood
may be left unchanged even though they are sensitive or are adjusted
to implausible values or resources are wasted to measure or evaluate
non-sensitive parameters. Kolb, quoted by Rabitz (1989) indicated that
without sensitivity analysis modelling is ‘intellectually dishonest’.

Although SA was conducted on DNDC by several authors, many
used a “local” approach (Li et al., 1992a, 2004b; Leip et al., 2008)
instead of a “global” approach. Unlike global SA (GSA) (Nossent et al.,
2011; Castaings et al., 2012; Borgonovo et al,, 2012; Sun et al., 2012),
local SA (Crick et al., 1987) allows only one parameter to vary at a time,
which deals with only small perturbations of the reference model and
is not able to take into consideration the interactions among param-
eters, their ranges of uncertainty, and non-linear responses to pa-
rameters. Recently, Monte Carlo-based GSA was introduced for DNDC
(Hutchinson and Mosier, 1979; Li et al., 2004b, 2005; Werner et al.,
2007). This method was embedded into the DNDC model, which
was set to divide each parameter into eight intervals (Li et al., 2004b).

Most of the previous studies investigating SA of DNDC used only
a single years simulation (Hutchinson et al., 2007; Li et al., 1992a,
2004b). Performing long-term (>10 yrs) SA is very important for
evaluating ecosystem models, especially for the models used to
predict soil organic carbon (SOC) and/or the impact of climate
change. The objective of this study was to conduct a long-term GSA
of the DNDC model for predicting annual change of SOC, N,O
emission and crop yield using a method based on Bayesian analysis
of computer code outputs (BACCO; Kennedy and O’Hagan, 2001;
Oakley and O’Hagan, 2004).

2. Materials and methods
2.1. The DNDC model

The DNDC model is a general model of Carbon (C) and Nitrogen (N) bio-
geochemistry in agricultural ecosystems, which consists of two components: (1)
sub-models for soil environmental state, plant growth and decomposition which
predict the dynamics of soil temperature, moisture, pH, Eh and substrate concen-
tration profiles based on primary drivers (e.g., daily weather, soil properties, and
crop management scenario); and (2) sub-models for nitrification, denitrification,
and fermentation that track production, consumption and emission of N0, NO, N,
ammonia (NH3) and methane, based on soil environmental factors. The DNDC model
is fundamentally designed around coupled C and N cycles. Soil organic carbon
consists of four major pools: plant residues, microbial biomass, humads and passive
humus. Each pool consists of sub-pools with different specific decomposition rates.
The daily decomposition rate for each sub-pool is regulated by the pool size, specific
decomposition rate, soil clay content, N availability, soil temperature and moisture.
When SOC in a pool decomposes, the decomposed C is partially allocated to other
SOC pools, and the remainder lost as CO,. Dissolved organic C is produced as an

intermediate during the decomposition process, and can be immediately consumed
by the soil micro-organisms.

Soil aeration status is calculated based on oxygen diffusion and consumption in the
soil profile in a kinematic module called an anaerobic balloon. Based on the predicted
redox potential, the soil in each layer is divided into aerobic and anaerobic parts where
nitrification and denitrification occur, respectively. When the anaerobic balloon is
inflated, more substrates (e.g., dissolved organic C, NH4 and N oxides) will be allocated
to the anaerobic micro-sites to stimulate denitrification. When the anaerobic balloon is
deflated, nitrification will be enhanced. Gases (NO and N,0) are produced during both
the nitrification and denitrification processes, and are subject to further trans-
formation during their diffusion between the aerobic and anaerobic micro-sites.

Crop growth is calculated in a daily time-step based on solar radiation, tem-
perature, N stress and water stress. Nitrogen demand of the crop is calculated based
on the optimum daily crop growth and the plant C/N ratio. The actual crop N uptake
is limited by N or water stress during the growing season. After harvesting the crop,
all the roots are left in the soil profile and a user-defined fraction of the above-
ground litter remains on the soil surface as stubble until a simulated tillage event
incorporates the stubble into the soil profile. The crop litter incorporated into soil
will be partitioned into different SOC pools based on the C/N ratio of the litter. The
DNDC model has evolved into a comprehensive ecological model that can be used in
most agricultural systems (Levy et al., 2007; Li et al,, 1992a,b; 1994; Pattey et al.,
2007; Saggar et al., 2007; Zhang et al., 2002).

2.2. Sensitivity analysis

Sensitivity analyses fall into two categories, local SA and global SA (Homma and
Saltelli, 1996; Saltelli et al., 1999, 2000a; Shahsavani and Grimvall, 2011; Annoni
et al,, 2011). Local SA considers perturbations about local — or single point esti-
mates — of model parameters. Parameters are varied one at a time to determine
which parameters have the greatest effect on model output. Though widely used,
local SAs often fail to produce meaningful results when the model under consid-
eration is non-linear, when input variables are subject to different orders of un-
certainty or they interact (Homma and Saltelli, 1996; Hunter et al., 2000; Saltelli
et al., 1999), or model parameters are perturbed simultaneously but with different
magnitudes (Mills et al., 1999). In contrast to local SA methods, global SAs (Saltelli
et al.,, 1999) allow many parameters to vary simultaneously and consider variation
in parameters throughout the parameter space. Hence, global SAs reflect the influ-
ence of each parameter averaged over all possible values of the other input pa-
rameters (Homma and Saltelli, 1996; Saltelli et al., 1999). In addition, they allow one
to assess the importance of interactions among model parameters as they relate to
model predictions. Several global SA methods have been introduced, such as
regression analysis (Saltelli, 2004), the Morris method (Morris, 1991), regional SA
(Hornberger and Spear, 1981), Sobol’s variance decomposition (Sobol’, 1993) and
BACCO (Kennedy and O’Hagan, 2001). The method of BACCO was chosen for this
study because of its advantages compared to other methods (Kennedy et al., 2006,
2009), which are described in the following paragraphs.

2.3. BACCO GEM-SA

The BACCO method is based on a Bayesian analysis which is able to address
multiple sources of uncertainty affecting model performance (Oakley and O’'Hagan,
2004; Kennedy et al., 2006). The theory related to the BACCO method of GSA is
offered by Oakley and O’Hagan (2004), while the statistical theory and mathematical
principles dominating the Gaussian process (GP) emulation are documented by
Kennedy and O’Hagan (2001) and Kennedy (2004). Furthermore, a comprehensive
introduction of the BACCO method could be found in a tutorial written by O’Hagan
(2006). Recently, the BACCO approach has been implemented in the Gaussian
emulation machine for sensitivity analysis software (GEM-SA, v1.1) (Kennedy, 2004,
2005), which can be downloaded for free.

The BACCO method has the ability to analyse the sensitivity of model outputs
simulated by DNDC to all the important input variants over the full range of likely values
adopted for the input parameters. In fact, the two major steps embedded in the BACCO
method are: 1) building an emulator of the model from a set of training points gen-
erated from runs of the actual model under study, with these well designed to cover the
multidimensional input space using a space-filling algorithm; 2) using the emulator
built in the first step to compute the SA quantities of interest (Petropoulos et al., 2009).

Unlike LSA and other Monte Carlo based GSAs (Flores-Alsina et al., 2012), the
BACCO is a comprehensive methodology. SA results are obtained directly from the
emulator which could make the procedure very fast and efficient (O’Hagan, 2006).
The results include the decomposition of output uncertainty into components due to
uncertainty in single inputs or pairs of inputs, together with a measure of the
additional uncertainty from emulation (the accuracy evaluation of the emulator)
(Kennedy, 2004). Consequently, for the SA of comprehensive deterministic models
like DNDC, the BACCO is a computational saving alternative because of the following
advantages (O’Hagan, 2006): 1) the emulator is generated from a relatively small
number of model runs covering a multidimensional input space, and is used to
perform a computationally inexpensive and efficient analysis of all the SA compu-
tations found in the original model code; 2) as long as the emulator is built, is not
necessary to run the actual model any more (Kennedy et al., 2009), regardless of how
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many analyses are required to assess the simulator’s behaviour, which is a very
distinct advantage compared to other GSA methods (Saltelli et al., 2000a), which
typically require a new set of simulator runs for each analysis. Therefore, when
BACCO is compared for instance with Monte Carlo based GSAs, the approach re-
quires far fewer model runs since the original code is only run to develop the
emulator; 3) the emulator provides a convenient way, in comparison to other GSA
methods, to visualize the influence of varying individual parameter or pairs of pa-
rameters and to identify the inputs to which the output is most sensitive; and 4) last
but not least, a self-test of the emulator’s performance is embedded in matching the
original model performance, thereby providing an accurate and reliable indication of
the trustworthiness of its analysis.

The above mentioned emulator is based on Bayes’ theorem, which is a statistical
representation of the original model. For the emulator in BACCO, a prior belief based
on a Gaussian processes model about the actual model is inferred. The theorem of
Bayes’ and a set of the model runs are considered together to refine the prior in-
formation to yield the posterior distribution of the output. The emulator is typically
much faster, easier and more efficient to run across the entire multidimensional
input space than is the actual model (Petropoulos et al., 2009).

One of the novel advantages of the BACCO GEM-SA is the self-test mechanism,
i.e,, accuracy assessment of the emulator (Bastos and O’Hagan, 2008). Several terms
of it were involved, including a sigma-squared value, and a set of cross-validation
statistical and roughness values. The sigma-squared value expresses the variance
of the emulator after standardizing the output, and effectively provides a measure of
the non-linearity in the emulator. Low sigma-squared values indicate these pa-
rameters exhibit only small or moderate deviations from linearity. Cross-validation
statistical measures can be produced automatically when the emulator is built in
order to check the accuracy of both types of output, including the cross-validation
root mean squared error (CVRMSE) and cross-validation root mean squared stan-
dardized error (CVRMSSE). CVRMSE is simply the square root of the mean square
error of the emulator predictions at the training points, and the CVRMSSE expresses
the residual divided by an estimate of its standard deviation. The value of CVRMSSE
should be close to 1.0 if the emulator variance is an accurate estimate of the actual
error variance. In addition to cross-validation, the emulator provides estimates of
the smoothness of each of the model inputs, so-called “roughness values”, which is
a unitless metric describing essentially how rapidly the output responds to changes
in each input (Petropoulos et al., 2009). High roughness values are indicative of non-
linear relationships of those inputs with regards to the output considered.

The primary SA output from GEM-SA includes the computation of the relative
contributions of main and joint effects (pairwise interactions only) of the input
parameters to the overall output variance, as well as the total effects. The compu-
tation theory of these results is based on a direct decomposition of the model output
variance into factorial terms, named ‘importance measures’ (Ratto et al., 2001). The
percentage variance contribution of each input’s main effect to each output is
reported, which provides a simple means of ranking the inputs in terms of their
importance. The percentage variance component associated with each input mea-
sures the amount its main effect contributes to the total output variance, based on
the uncertainty distributions for all inputs. Additionally, the total effect includes the
main effect and interactions, so it can be used to determine the degree of pairwise or
higher order interactions among parameters, and the sum of all inputs’ total effects
with respect to each model outcome will be greater than 100%.

There are two built-in sampling algorithms in GEM-SA software to assign
training runs within the input space and build the emulator: LP-t and Maximin Latin
Hypercube (MLH). The LP-t design (Saltelli et al., 2004) is based on the uniformly
distributed sequences in space, providing a mechanism for generating a determin-
istic sequence of points in multidimensional space that is uniformly distributed
(Saltelli et al., 2000a). The LP-t method was considered to be an efficient, robust and
sophisticated way to perform random sampling by Petropoulos et al. (2009). The
Maximin Latin Hypercube design (MLH) is a particular case of stratified sampling
(Saltelli et al., 2004), which ensures that each input factor is represented in a fully
stratified manner. The maximin criterion maximizes the minimum distance
amongst all pairs of points (Morris and Mitchell, 1995) and is frequently used to
obtain good space-filling properties (Daneshkhah and Bedford, 2008; Kennedy et al.,
2006; Van Dam et al., 2005; Voyer et al., 2009; White et al., 2008).

2.4. Sensitivity analysis of DNDC

A global sensitivity analysis was conducted on a continuous spring wheat sys-
tem because continuous cropping appears to be one of the most effective dryland
cropping systems to increase soil organic carbon (Liebig and Gollany, 2004). Among
more than 50 inputs for DNDC (v 93), 27 parameters with wide ranges (minimum
and maximum values) were selected for SA, based on experts’ experience, literature
review as well as the model recommendations (Table 1). Weather conditions, such
as precipitation and air temperature are already well-known to be sensitive factors
affecting DNDC model outputs (Li et al., 1992a, 1996, 2004b; Giltrap et al., 2010) and
are beyond the control of the user, and thus, were not selected for this study. We
used weather data (daily precipitation, minimum and maximum temperature)
collected from 1921 to 2006 from a site near Three Hills, Alberta, Canada (51°42’ N,
113°13’ W, and 907 m). We use this weather data in order to simulate the continuous
spring wheat experiment (the site and experiment is described in detail in “3.4

Table 1

DNDC input parameters tested for long-term sensitivity analysis using the BACCO
GEM-SA method. The table includes parameters definitions and the minimum and
maximum parameter values.

Brief name of Actual name of the Unit Minimum Maximum

model input  model input

NRAIN Atmosphere N deposition ppm 13 1.9
concentration in rainfall

NATM Atmosphere background pgNm~>  0.01 0.1
NH3 concentration

CO, Atmosphere CO, ppm 320 450
concentration

BD Soil bulk density gcm 3 0.5 2.25

PH Soil pH Unitless 4.5 9.1

ISOC Initial SOC (Soil organic kg Ckg™! 0 0.5
carbon at surface 0—5 cm)

CLAY Soil clay content Unitless? 0 1

LITSOC Litter SOC kg Ckg™'  0.005 0.02

NO; Soil NO3—N density mgNkg' 85 15.5

NH4 Soil NH—N density mgNkg™! 085 15

MOI Soil moisture Unitless® 0.27 0.65

TEM Soil temperature Degree -10.5 10.5

Celsius

FC Field capacity unitless?® 0 1

WILP Wilting point Unitless® 0 1

HYDC Hydro-conductivity mh-! 0.01 0.025

PORO Soil porosity Unitless? 0.2 0.8

SOCPA Depth of soil profile with m 0.04 0.15
uniform SOC content

SOCPB SOC decrease rate % 0.5 5
below top soil

GRESD Ground residue Unitless® 0 1

MYD Maximum yield kg Cha™! 1000 2000

CNG Grain C/N ratio Unitless” 20 35

CNS Shoot C/N ratio Unitless® 45 55

CNR Root C/N ratio Unitless® 55 65

WTREQ Water requirement g water g~' 100 250
demand DM

DTILL Tillage depth Method® 1 4

DFERTI Fertilization depth cm 0 20

UREA Urea application kgNha! 0 180
amount

2 A value between 0 and 1.

b A ratio between carbon content and nitrogen content.

¢ The method of DTILL in the interface of the DNDC model include four alternative
depths of tillage, i.e., 1 represents “only mulching 0 cm”, 2 represents “ploughing
slightly 5 cm”, 3 represents “ploughing with disk or chisel 10 cm” and 4 represents
“ploughing with moldboard 20 cm”.

Model calibration and validation”) under no-till or conventional till management
during the period of 1991-2006 (Wang et al., 2007). Corresponding cropping system
observation data, including annual change in surface horizon SOC, NO flux and
yield, were available for comparison against DNDC outcomes. Results of this SA
study will be used for testing the DNDC model on simulations of this site. Results
could also be used for much broader environments because wide ranges of
parameter values were selected for SA. In addition, the 86 year simulation was
examined for ten snapshot years (the year of 0, 10, 20, 30, 40, 50, 60, 70, 80 and 86
from 1921) to examine the long-term sensitivity of input parameters.

Given the GEM-SA software constraint limiting a maximum number of training
points to 400, a two-step GSA was carried out to improve the efficiency of SA
(Kennedy et al., 2009). Firstly, a preliminary BACCO GEM-SA was conducted with
400 code runs for the 27 input parameters using the two sampling methods. The
purpose was 1) to identify a suitable sampling method for GEM-SA of the DNDC
model which produced relatively low roughness values, sigma-squared values, and
CVRMSSE and 2) to select input parameters that may have significant influence on
the outputs (defined here as parameters which have an average total effects of >5%).
Using these preliminary results a second SA was subsequently conducted with
BACCO GEM-SA. The second run of BACCO GEM-SA with fewer input parameters
allowed more training points for each parameter, which improves the accuracy of SA
(Kennedy et al., 2009). In this step, means and dynamics of change over 10 snapshot
years in main effect and total effects (main effect plus interactions) on predictions of
the three outputs were compared among these input parameters.

2.5. Model calibration and validation

Model calibration and validation were conducted using the data collected from
a long-term cropping systems experiment near Three Hills, Alberta, Canada. The
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details of the experiment were described by Wang et al. (2007). Briefly, the
experiment was initiated in 1991 with the whole area seeded to canola, then nine
different crop rotation treatments began in 1992 and continued to 2006 [continuous
wheat (CW), wheat-fallow (WF), wheat—wheat-fallow (WWF), peas—wheat-fallow
(PWF), canola—barley—peas—wheat (CBPW), wheat-green manure (peas) (WP),
wheat—peas—oat silage-fall rye, grass, and the mixture of alfalfa and grass]. All
phases of each rotation were present each year. The experimental design was
a randomized complete block with three replications. Since the fall of 1994 each
treatment was split into two tillage methods: conventional and no-till. The con-
ventional system usually received pre-seed and post-harvest tillage operations
during the cropping year and some tillage operations during the fallow year.

Firstly, we conducted a spin-up run (perennial grass, 1400 years) to achieve a near-
steady state in SOC pools before the start of cultivation (1905) in order to reduce the
effects on simulation results from uncertainties in the initial conditions, such as the
composition of SOC (Fumoto et al., 2008; Leip et al., 2008; Peltoniemi et al., 2007;
Foster et al., 2003). Additionally, the spin-up run may also minimize the effects of other
erroneous initial conditions, such as soil moisture (David et al., 2009).

Secondly, model calibration was conducted with the real observed data, but
because of data limitations we only used in the calibration the simulated and meas-
ured N0 flux from the WF rotation of Three Hills. Parameters to be calibrated were
those with ‘important’ impacts on the N,O emissions of DNDC prediction (i.e., dSOC
and yield) based on the results of BACCO GSA. The calibrated values of the selected
parameters were given and ranges with +10% of the calibrated data were also showed.

Finally, after the calibration, model validation was executed by using another
part of the real measured data of Three Hills. In this study we focus on validation of
the results of SA instead of the overall prediction performance of DNDC, which will
be conducted in further studies. Also, because of the design of the experiment we are
only able to validate the sensitivity of tillage on the prediction of yield, N,O flux and
soil carbon. We used the CW, CBPW and WF treatments for model validation.

3. Results and discussion
3.1. Emulation accuracy
Generally speaking, some statements considering emulation

accuracy should be made before any analysis of the SA results.
Assessment of the emulator performance used the self-test

29

mechanism of the BACCO approach (see Section 2.3), with these
criterion based upon the quantitative evaluation of the series of
statistical measures calculated by GEM-SA. The following summa-
rises the sigma-squared value and a set of “cross-validation” self-
explanatory statistical parameters for the two sampling methods.

Firstly, most of the sigma-squared values for all the conducted
SA tests are low, while the data of input parameters in the MLH
sampling ranged from 0.6 to 1.73 whereas it is 0.9—2.1 in the LP-t
sampling, indicating that these parameters exhibit only mild bias
from linearity. And by Fig. 1, we can see most sigma-squared
value of inputs in MLH sampling are less than that of LP-t sam-
pling, reflecting that the MLH should be a suitable measurement of
the non-linearity in the emulator.

Fig. 1 also shows the statistics related to the cross-validation
outcomes of the emulator. Most of the CVRMSE generated by the
MLH design is less than that of LP-t design, especially for dSOC and
N3O flux in most of the snapshot years. Additionally, the CVRMSSE
for two designs are also very close to 1.0 in all the SA experiments,
with values varying between 0.95 and 1.06 for the MLH design and
0.1 to 1.08 for the LP-t sampling, respectively (Fig. 1). The deviation
from 1.0 of CVRMSSE for MLH design in the 10 snapshot years for
dSOC, N,O flux and yield is 0.05, 0.13 and 0.24, respectively, while
the value for LP-t design is 0.23, 0.94 and 0.21, respectively. This
indicates that most of the CVRMSSRE values of MLH design are
closer to 1.0 than that of the LP-t sampling, which means that the
emulator variance generated by MLH was a more accurate estimate
of the actual error variance.

Notably, roughness values for most of the input parameters were
very low for both sampling methods (data not show) indicating that
the emulator is a strong approximation to the true model
(Petropoulos et al., 2009). Higher roughness values are indicative of
non-linear relationships between parameter and model outcomes
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Fig. 1. Variation of long-term contribution of most important factors with respect to total DNDC output variance. The year 1 to year 86 is the ten snapshot year selected from the

long-term simulation.
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(Petropoulos et al., 2009). We found that parameter roughness
values obtained by the MLH method were generally lower than that
obtained by the LP-t method, which partially proved the MLH
design provided a superior emulation compared to LP-t sampling.

In conclusion, the emulator fit of GEM-SA is a good represen-
tation of the DNDC model. Data analysis indicates the MLH sam-
pling method is more efficient than Lp-t design when conducting
the emulation and it was better suited for use in the second step of
the BACCO GEM-SA of the DNDC model.

3.2. Preliminary BACCO GEM-SA

According to the preliminary BACCO GEM-SA with the MLH
method, the total effects of each input parameter contributed to the
total variances of DNDC outputs differently (Table 2). Most of the
input parameters have little total effects on the output of dSOC.
Only 10 parameters had >5% contributions to the total effect on
dSOC. The most influential parameters on the output of dSOC were
the cumulative effects of ISOC (26.9%), PORO (18.0%), GRESD
(ground residue) (16.6%) and WILP (16.3%) (see Table 1 for
parameter definitions). Furthermore, for the prediction of N;O,
there were only 8 parameters that had >5% contribution to the total
effects. The most influential parameters were DFERTI (fertilization
depth) (25.0%), PH (soil pH) (15.4%), ISOC (13.8%) and PORO (13.6%).
Similarly, eight of the 27 input parameters contributed >5% of the
total effects on simulated grain yield. WILP was the most influential
parameter (28.3%), followed by PORO (25.0%), WTREQ (water
requirement demand) (22.7%) and ISOC (20.5%). Some parameters,
such as ISOC, CLAY, PORO and SOCPA had significant contributions
(>5%) to the predictions of all three outputs, while some only had
significant contribution for a single output, such as GRESD for dSOC,
and DFERTI and PH for N,O (Table 2). In total, there were 14 pa-
rameters that had averaged total effects over the ten snapshot years
greater than 5% for at least for one prediction output (Table 2),
which were selected for the next step of SA.

Table 2

The long-term average value of total effects (%) of each parameter with respect to the
output variance of annual change of soil organic carbon (dSOC), nitrous oxide flux
(N20) and yield predicted by DNDC over 10 snapshot years in the first step of BACCO
GEM-SA.

Input parameters® Total effects (%)?

dsoc N0 Yield
BD 6.5° 41 1.9
CLAY 8.3 9.6 10.6
DFERTI 1.0 249 1.6
DTILL 5.7 9.9 0.8
FC 6.1 3.0 11.7
GRESD 16.6 15 1.3
1SOC 26.9 13.8 20.5
MYD 7.8 2.1 13.7
PH 1.0 15.4 2.0
PORO 18.0 13.6 25.0
SOCPA 6.9 6.2 9.5
UREA 2.1 6.5 2.6
WILP 16.3 34 283
WTREQ 6.3 3.6 227
HYDC 13 43 1.4
LITSOC 0.6 0.9 1.0
MOl 0.7 0.8 35
NATM 0.9 2.0 0.7
NH4 0.3 0.5 0.6
NO; 0.7 24 1.0
NRAIN 0.5 0.8 14
SOCPB 35 48 23
TEM 1.1 1.2 1.6

@ Total effects includes main effect and all of the interactions between each input.
b Bolded values are greater than 5% in form of total effects.
¢ Definition of each input parameter is described in Table 1.

3.3. Second step of BACCO GEM-SA

The second run of BACCO GEM-SA with fewer input parameters
(which have the average total effects greater than 5% to each of the
DNDC output over 10 snapshot years in the first step of BACCO
GEM-SA) was conducted. In this step, means and the long-term
trend of change over 10 snapshot years in the main effect and to-
tal effects (main effect plus interactions) on predictions of the three
outputs were compared among these input parameters. According
to the results of step 2, the main effect on variance of dSOC out-
comes resulting from each input parameter ranged widely (0—
35.6%) (Table 3). The parameter with the most significant individ-
ual effect was ISOC (initial shallow soil organic carbon) (35.6%),
followed by CLAY (soil clay content) (16.1%) and BD (soil bulk
density) (15.3%), with the other parameters having insignificant
contributions to dSOC. Some parameters had noticeably higher
total effects compared to their corresponding main effects indi-
cating strong interaction effects (Table 3). Input errors of these
parameters can lead to significant errors in simulations of dSOC.
The main effect alone accounted for 73.7% of the total dSOC var-
iance, while the first order interactions accounted for 18.3% and the
remaining effect (8%) was owed to the second or higher order in-
teractions. It seems that parameters with high main effects, such as
ISOC, CLAY and BD, also tended to have high interaction effects and
resulted in high total effects on dSOC, and vice versa. These three
parameters also showed high contributions to variance of dSOC in
the preliminary selection of step 1, but CLAY and BD were only the
fifth and eighth most relevant parameters (Table 3), indicating that
the two-step approach could improve the accuracy of SA. Previous
studies also found that CLAY (Leip et al., 2008), ISOC (Li et al., 1994)
and BD (Liu et al., 2006) sensitively affected the modelled dSOC, but
no study was conducted to investigate the changes of their sensi-
tivities to dSOC over time. Contributions of ISOC and BD over the
ten snapshot years were relatively consistent, but the main and
total effects of CLAY with respect to the total variance of dSOC
changed dramatically over the years (Fig. 2). It was very high in the
first year of simulation, and then it continually declined until
simulation-year 80. It seems that the importance of clay content in
the dSOC is described by the DNDC model, but its effect was later

Table 3

The long-term average value of the main effect and total effects (%) of each
parameter with respect to dSOC, N,O and yield predicted by DNDC over 10 snapshot
years in the second step of BACCO GEM-SA.

Input parameters® dsocC N,0 Yield

Main  Total Main  Total Main  Total

effect effects effect effects effect effects
BD 15.3* 257 1.1 9.0 0.2 2.8
CLAY 16.1 30.1 111 32.2 84 19.7
DFERTI 0.03 0.6 2.0 19.6 0.1 13
DTILL 0.1 14 0.5 8.7 0.1 2.0
FC 0.6 2.8 0.7 2.7 4.1 16.6
GRESD 1.1 2.8 0.3 34 0.1 14
ISOC 35.6 521 1.1 226 2.0 234
MYD 03 1.7 0.2 32 14 6.7
PH 0.03 0.2 10.0 338 0.1 0.2
PORO 1.0 4.2 13 18.7 6.0 221
SOCPA 1.6 4.8 0.1 1.9 0.1 2.0
UREA 0.03 0.8 141 334 0.3 4.0
WILP 1.6 74 03 6.1 27.5 51.1
WTREQ 03 2.1 0.7 5.6 9.0 18.0
Total % variance 73.7 433 59.3
First order interactions  18.3 271 19.5
2nd or higher order 8.0 29.6 21.2

interactions

2 Bolded values are greater than 5%.
b Definition of each input parameter is described in Table 1.
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Fig. 2. Long-term variation of main effect and total effects of five most sensitive parameters with respect to total DNDC output’s variance according to the second step of BACCO
GEM-SA. Annual change of SOC, N,O and yield is the model output. Definition of the parameters is described in Table 1.

partially replaced or concealed by other factors that might be
closely associated with clay content. Even so, clay content was al-
ways an important factor for dSOC in the model compared with
most of the parameters (>5% of total effects to the total output
variances of dSOC).

For N,O, UREA (urea application amount) (14.1%) had the
highest main effect, followed by CLAY (11.1%) and PH (10.0%)
(Table 3). The main effects of the other parameters were quite small
(<2%). Some input parameters, however, had high total effects on
the simulation of NoO by DNDC compared to main effects indicating
significant interactions (Table 3). This also suggests that the influ-
ence of the characteristics of the soil-crop-climate system on
emissions of N0 is very complicated, and the synthetic effect of all
the factors should be considered. The total main effect of all 14
parameters was only 43.3% which means effects were mainly
contributed by interactions, where first order and higher order
interactions contribute by 27.1% and 29.6%, respectively. Seven of

the inputs exhibited >9% of the total effects with respect to varia-
tion of N»O emissions by DNDC, with PH being highest (33.8%),
followed by the almost equally high UREA (33.4%) and CLAY (32.2%)
(Table 3). Other high-contribution factors were ISOC (22.6%),
DFERTI (19.6%), PORO (18.7%) and BD (9.0%). Although the selected
parameters with high contributions to the simulation of N,O were
similar between the two steps, the orders of value were quite dif-
ferent. For example, UREA (33.4%) and CLAY (32.2%) had the second
and third largest total effects, respectively, according to step 2,
while the corresponding total effects calculated by step 1 were only
the seventh (6.5%) and sixth (9.6%) largest, respectively (Table 2).
Some previous studies also found PH (Li et al., 1992a), UREA (Brown
et al., 2002), CLAY (Li et al., 1992a; Villa-Vialaneix et al., 2012) and
ISOC (Li et al., 1996; Villa-Vialaneix et al., 2012) to be important
parameters influencing the prediction of N»O by DNDC. Similar to
dSOC, clay content had very high total effects on simulated variance
of NO emissions from the beginning of the run (Fig. 2). It then
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reduced linearly until simulation-year 50. Oppositely, the total ef-
fects of urea application were relatively low in the beginning of the
run. It increased from simulation-year 20 until simulation-year
40,then was relatively stable. Dynamic changes of other parame-
ters were either relatively small or no clear trend could be revealed.

To our knowledge, no previous SA has been conducted on yield
simulation by DNDC. According to the second step of BACCO GEM-
SA, WILP (wilting point) had the highest main effect on the output
variance of grain yield (27.5%), which was much higher than other
parameters (Table 3), indicating the importance of soil water status
on crop growth. The second and third highest parameters with
respect to the main effect were WTREQ (9%) and CLAY (8.4%),
respectively. Similar to the prediction of N»O, some parameters had
high total effects that were mainly associated with their high
interaction effects on yield prediction (Table 3). Consequently, the
sum of the main effects was able to explain only 59.3% of the yield
variance. First order and higher order interactions explained 19.5%
and 21.2% of the total yield variance, respectively. There were six
parameters that greatly affect the prediction of yield by DNDC with
WILP being extremely high (51.1%), followed by ISOC (23.4%), PORO
(22.1%), CLAY (19.7%), WTREQ (18.0%) and FC (field capacity) (16.6%)
(Table 3). The most relevant parameters calculated by step 2 were
quite consistent to those selected by step 1 (Table 2). Again, the
total effects of clay content were very high from the start of sim-
ulation (Fig. 2). It continuously reduced after simulation-year 10
until simulation-year 70. Other parameters did not have dramatic
variations in their total effects on the output variance of yield over
the near 90 year simulations.

There are a number of implications of these SA results. First,
both of ISOC and CLAY were among the five most sensitive pa-
rameters for all the three DNDC outputs simultaneously. In practice,
initial soil organic carbon and clay content are very important soil
characteristics, they have a primary effect on soil carbon decom-
position and the composition of soil texture, which will influence
the physiochemical processes in soil and crop production, respec-
tively, and our results reflect that the DNDC model adequately
captured the response of dSOC, N,O flux and yield to the changes in
ISOC and CLAY, especially during the long-term simulation.

CLAY content dominates the composition of soil texture, which
controls the soil type, and affects all of the physiochemical pro-
cedures during soil substrate decomposition. This decomposition
process influences the evolution of SOC, the production of N,O and
the formation of crop yield. Furthermore, sensitive effects of some
input parameters changed dramatically during the long-term GEM-
SA, such as CLAY, for which the SA curve decreased during the
simulation, while oppositely, the ISOC and WILP as well as BD
increased through time (Fig. 2). This phenomenon was partially due
to the long-term weather data we used during this study, which has
been emphasized was the most influential factor affecting the
behaviour of DNDC simulation (Li et al., 1992a, 1996, 2004b; Giltrap
et al., 2010). Our GSA was initiated with the long-term simulation
based on 86-year weather data set from Three Hills, soil properties
like SOC, clay content and bulk density had responded differently
under the various weather conditions, and the simulated DNDC
outputs varied during the long-term emulation. Consequently, the
SA results of the most important input parameters changed dra-
matically with the analysed years as they were involved in most of
the procedures in DNDC that influence the model outputs (their
total effects are the indication). In addition, the two-step BACCO
GEM-SA of the DNDC model indicates that the screening (Makler-
Pick et al., 2011) of the most influential input parameters is
necessary for GSA of a complicated stochastic model to reduce the
number of important inputs, which allows a more effective cover-
age of the reduced input space. Secondly, the discrepancy between
step 1 and 2 (the important sequence of some parameters with

Table 4

Site and field management characteristics of Three Hills, Alberta, Canada.

Items

Three Hills’ information

Pre-cultivation history

Land first cultivated
From 1905 to 1975

From 1976 to 1985

From 1986 to 1991

Research site opened
Experiment initiated

Location, and elevation
Ecoregion name

Soil landscape of Canada (SLC)
Initial carbon Ap horizon (%)
Soil classification

Landscape

Growing degree days (>0 °C)
Growing degree days (>5 °C)
Frost free period

Semiarid grassland vegetation-fescue
prairie-primarily rough fescue

1905 (1900—1910)

Cereal-fallow 2 year rotation with the
cereal phase mostly wheat with barley
about every third rotation
Canola-cereal-fallow 3 year rotation
with the cereal phase mostly wheat
with barley about every third rotation
Cereal-canola—cereal-fallow 4 year
rotation with the rotation probably
wheat-canola—barley-fallow

1991

1992 (continuous wheat, wheat fallow,
canola-barley-pea-wheat, etc.)

51°42' N, 113°13’ W, 923 m

Moist mixed grassland

546

3.65

Solonetic Black Chernozem
Undulating

2519

1489

113

Growing season precipitation (mm)
Growing season temperature (°C)

232 (mean), 98 (min), 378 (max)
15 (mean), 7 (min), 22 (max)

respect to DNDC outputs, Tables 2 and 3) is partially due to the
emulator approximation errors, because the emulator is built based
on the Gaussian process hypothetic prior belief of the DNDC model,
which is just a statistical approximation of the model input and
output. The difference between the two steps are also due to the
different proportions each parameter contributed during the var-
iance decomposition of model outputs in the two steps based on
a distinct number of input parameters (i.e., 27 and 14). Last but not
least, the results of our study could be applied in a wider envi-
ronment of DNDC simulation. Firstly, the range of selected input
parameters was wide enough (Table 1) to cover almost all the land
use types, especially for the north temperate zone, and secondly the
long-term trend of SA results was also sufficient to catch the most
important parameters with respect to the DNDC outputs, which
could be focused in the future validation and parameterization of
the DNDC model.

3.4. Model calibration and validation

A series of 102-year (1905—2006) runs of the DNDC model was
conducted using the management data of Three Hills, Alberta
(Table 4), and the annual N;O flux of wheat-fallow treatment from
2000 to 2006 was compared to the value of DNDC predicted. DNDC
simulations were carried out by varying four important parameters
(£10%) to N0 emissions according to the two-step GSA (Table 5),

Table 5
Calibration of some important parameters for N,O of DNDC prediction.
Calibrated +10%° -10%°
ISOC (kg C kg~1)? 0.04° 0.044 0.036
BD (g cm™3) 1.26 1.38 1.13
CLAY (Unitless) 0.41 0.45 0.37
DTILL (cm) 10 11 9

2 Definition of each input parameter is described in Table 1.

b The calibrated value of each parameter, which induced comparable N,O flux
with the real observed data.

¢ Values in the third and fourth column are the data plus and minus 10% by the
calibrated value.
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Fig. 3. Measured and DNDC simulated Nitrous oxide flux of each crop system based on
till and no-till management of Three Hills, Alberta from 2000 to 2006. CT, conventional
tillage, NT, no-till, CW, continuous wheat, CBPW, canalo—barley—pea—wheat, WF,
wheat-fallow.

while the values of other less-important parameters were fixed.
Results confirmed that among many input parameters, only several
of them have the important influence on the output variation of
N>O flux. This indicated that a number of inputs should be ignored
in the future parameterization of DNDC. However, for the data
limitation, calibration only employed for N,O flux instead of dSOC
and yield. Further validation of the model with real observed data is
described in the following part.

Measured N0 flux of the Three Hills site were used to validate
the DNDC model simulated N,O emissions from 2000 to 2006. For
this site, a number of “tillage*crop-rotation” treatment combina-
tions were established in 1994. Four of these combinations are
considered in the current work, including continuous wheat (CW),
a wheat-fallow rotation (WF), as well as canola—barley—pea—
wheat rotation (CBPW), all under No-till (NT) and Conventional
Till (CT) management. All wheat phases receive 67 kg N ha~!; no N
is applied to the pea phase. Grain yield, seven-year results (2000—
2006) of N0 and the change of soil carbon over time were made
available for use for validation. In this study we focus our validation
of the results of SA instead of the overall prediction performance of
DNDC which will be conducted in further studies. Also, because of
the design of the experiment we are only able to validate the

CT

sensitivity of tillage on the prediction of yield, N>O flux and soil
carbon.

As discussed above, the depth of tillage (DTILL) (0—20 cm) is the
fifth (step 1) and eighth (step 2) most sensitive factor for N,O
emissions by its total effects, as tillage is an important management
factor affecting the soil air permeability, which is a dominant factor
of N»O production and emissions.

Previous studies found no-till (NT) is a practice that could inhibit
(Elder and Lal, 2008; Gregorich et al., 2008) or enhance (Ball et al.,
2008) N,0 emissions from soil, while Rochette (2008) pointed out
that NT only increases N2O emissions in poorly-aerated soils, while
other research indicates that NT systems only reduce measurable
soil N,O flux when practiced in the long term (Six et al., 2004). So,
high uncertainties still exist in the research of N,O production and
emissions from soil. More field experiments and model simulation
should be conducted to minimize the uncertainties. Our field
experiment resulted in the NT treatment having reduced N,O
emissions compared with the tillage treatment from Three Hills
(except the CBPW rotation) (p < 0.05), and the DNDC model cap-
tured the same information (Fig. 3). Although the simulated N,O
flux by DNDC was less than that measured, experiment error may
account for this, thus, Fig. 4 illustrated that most of the DNDC
simulated annual average N,O flux fell into the +£95% confidence
interval of the measured data. This indicated that DNDC simulated
N,0 emissions was well fitted with the observed data. Due to the
data limitations, our validation needs to be continued after more
field trials have been performed.

As one of the most important inputs for the DNDC model, the
initial value of soil organic carbon in the soil surface layer was also
focused upon to validate the field observation with that of the
model simulation to see the response of the DNDC model to field
management (ISOC, Table 5). The studied time span was 1992—
1997, the first five years after the research site was opened. By
comparing measured and DNDC modelled value of SOC, we found
the treatments based on NT sequestered more C than conventional
tillage (CT) rotations (Fig. 5A). By the measured data, the treatments
with NT, the CW and CBPW caused an increase of SOC sequestration
during the 6 years while the WF led decreased SOC. However,
significant differences between rotations were not apparent in this

NT
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Fig. 4. Validation of DNDC model with real measured N,O flux from Three Hills crop systems 2000—2006. +95% Conf represent the measured data £95% confidence interval. CT,
conventional tillage, NT, no-till, CW, continuous wheat, CBPW, canola—barley—pea—wheat, WF, wheat-fallow.
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Fig. 5. Soil organic carbon content of Three Hills (1992—1997) by simulation of DNDC
model (A) and the soil organic carbon content of the year 1992 and 1997 based on no-
till (B). CT, conventional tillage, NT, no-till, CW, continuous wheat, CBPW, canola—
barley—pea—wheat, WF, wheat-fallow. MEAS means measured value.

study and may be due to the unseasonably dry growing season and
the natural variability at the site. The continuous crop rotations
appeared to sequester more C than the rotations with fallow. For
the SOC simulated by DNDC, it increased from 1992 to 1997 except
for the CW treatment (Fig. 5B). This suggested that DNDC captured
the correct evolutions of soil carbon, as different tillage strategies
controlled the change of initial SOC input, which has been fixed to
0.035 kg C kg1 in this validation procedure, though this still proved
that DNDC corresponded correctly to the variation of ISOC. We did
not find DTILL to be one of the most important factors for dSOC in
this two-step BACCO GEM-SA, mainly because the tillage is just an
indirect factor that influences the evolution of the ISOC during the
crop growing stage, and thus the annual change of SOC. Actually,
no-till management is one of the most efficient practices for carbon
sequestration in cropland if it is combined with the management of
crop residues, proper crop rotations, fertilization regimes and
manure applications. However, the conversion of CT to NT will
increase SOC if it: 1) decreases the rate of SOC decomposition; or 2)
increases carbon inputs and thus crop yield, which is often
observed in some regions of the prairies (Desjardins et al., 2002).
There are a number of factors contributing to grain yield, and
climate is the most important. So uncertainties in grain yield cal-
culation exist both during the field experiment and the model
simulation. According to our GSA of the DNDC model, we did not
find great sensitivity of grain yield of spring wheat to the depth of
tillage. But as discussed above, NT will increase crop yield in specific
areas due to its greater water conservation ability than CT. In
another study, Wang et al. (2007) observed that NT could mitigate
heat stress of wheat and improved biomass and yield. The surface
residue and standing stubble in NT act as insulation and impede the
exchange rate of thermal energy between the soil and atmosphere.
The higher near-surface soil moisture under this system can also
help buffer the extremes in daily soil temperatures and reduce root
heat stress (Wang et al., 2012). While DNDC does not simulate this
physiological process, this should be included in future versions of
the model, which could greatly improve it. Our validation was
carried out by comparison of observed grain yield with the DNDC
simulated data. We found the yield of NT-based rotations were
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Fig. 6. The measured and DNDC modelled grain yield of Three Hills’ rotation systems
from 1999 to 2002. CT, conventional tillage, NT, no-till, CW, continuous wheat, CBPW,
canola—barley—pea—wheat, WF, wheat-fallow.

greater than CT-based rotations, indicated by the field experiment
as well as the DNDC simulation (Fig. 6). This indicates that the
DNDC model performed well simulating grain yield for the crop-
ping systems of Three Hills, Alberta. DTILL was not one of the most
sensitive inputs of grain yield, mainly because it was just an indirect
factor that affects the productivity of crops. The total effects of
DTILL with respect to total output variance of yield were much
greater than its main effect (Table 3). From Fig. 6, it also can be seen
that there is only 4 years yield data that were validated. Further
validation should be conducted based on longer-term field trials.

In conclusion, the results of the two-step of BACCO GEM-SA
indicated that initial soil organic carbon in soil surface and soil
clay content are the most important parameters for the main out-
puts of DNDC model, while most of the input parameters contribute
little to the total output variance of DNDC outcomes. This suggested
to us that, in the future parameterization of DNDC model, we
should use fixed values for the less-important parameters, and
calibrate the important variants with the field trials.

4. Conclusions

The selection procedure included two steps which ensured
a more accurate sampling method (MLH) and increased training
points for each pre-screened parameter and resulted in improved
efficiency of the sensitivity analysis. Our study indicated that most
of the 27 input parameters contributed little to the three model
outputs. There were only three and six inputs that contributed to
greater than 10% of the total output variances of dSOC and N,O by
their total effects, respectively. And six parameters contributed
greater than 10% of the total output variance of grain yield simu-
lated by DNDC. Among the selected parameters, both the ISOC and
CLAY were included amongst the five most important input pa-
rameters with respect to the three outputs. Results also indicated
that sensitivities of some parameters were time-dependent, which
changed dramatically over the years. Therefore, it is necessary to
conduct long-term global sensitivity analysis instead of only one
year’s simulation as previous studies did (Li et al., 1992a, 2004b).
Otherwise, the impact of a parameter on the long-term prediction
might be overestimated (in the case of CLAY) or underestimated (in
the case of UREA for N;0).

Some cautionary notes for future applications of GEM-SA should
be considered, as no statistical method is perfect. Uncertainties in
the estimation of the computation of main and total effects exist.
With regards to this point, we know that, overall, emulator per-
formance of MLH was found to be satisfactory as was documented
by the overall range of values of the 27 input roughness measures
(which varied from 0.0 to 7.9) as well as from the overall emulator
statistics of sigma square (which varied from 0.6 to 1.7) and the
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CVRMSSE results (which varied from 0.95 to 1.06). Noticeably,
a number of the most sensitive model inputs (such as PORO for
dSOC, PH for NO emissions and WILP and ISOC for yield) were
often those that had the highest roughness values. This is easily
understood because the effects of these factors on the DNDC out-
puts are highly non-linear, something that is also verified from the
presence of the high order interaction effects and from studying the
relationship between these model inputs and the outputs from the
model. Although the site-specific values from Three Hills, Alberta
were used for the GSA, incorporating their variation in the training
data used with GEM-SA was impractical. Results from the present
study are not expected to be site-specific, as all other model input
parameters were varied in their whole theoretical range that can be
used in the DNDC model. However, in order to quantify the influ-
ence of the parameters in this study which were adopted from the
Three Hills site, the same work could be implemented for different
sets of these fixed inputs. In order to furnish a fully inclusive
evaluation of DNDC, the SA study performed here should ideally be
followed by comparisons of DNDC simulations with more real field
measurements from other sites.

Validation of real field data with the DNDC model outputs
suggested that the model responded well to the ISOC and DTILL,
and detailed validation based on long-term field trials should be
considered. Furthermore, future parameterization of the DNDC
model should focus on the most important input parameters to
yield a highly efficient model calibration.
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