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Abstract

The geochemical model PHREEQC is capable of simulating a wide range of
equilibrium reactions between water and minerals, ion exchangers, surface complexes,
solid solutions, and gases. It also has a general kinetic formulation that allows modeling
of non-equilibrium mineral dissolution and precipitation, microbial reactions,
decomposition of organic compounds, and other Kkinetic reactions. To facilitate use of
these reaction capabilities in scripting languages and other models, PHREEQC has been
implemented in modules that easily interface with other software. A Microsoft COM
(Component Object Model) has been implemented, which allows PHREEQC to be used
by any software that can interface with a COM server—for example, Excel®, Visual
Basic®, Python, or MATLAB®. PHREEQC has been converted to a C++ class, which can
be included in programs written in C++. The class also has been compiled in libraries for
Linux and Windows that allow PHREEQC to be called from C++, C, and Fortran. A
limited set of methods implement the full reaction capabilities of PHREEQC for each
module. Input methods use strings or files to define reaction calculations in exactly the
same formats used by PHREEQC. Output methods provide a table of user-selected model

results, such as concentrations, activities, saturation indices, or densities.

The PHREEQC module can add geochemical reaction capabilities to surface-water,
groundwater, and watershed transport models. It is possible to store and manipulate
solution compositions and reaction information for many cells within the module. In
addition, the object-oriented nature of the PHREEQC modules simplifies implementation

of parallel processing for reactive-transport models.



The PHREEQC COM module may be used in scripting languages to fit parameters;
to plot PHREEQC results for field, laboratory, or theoretical investigations; or to develop

new models that include simple or complex geochemical calculations.
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Software Requirements

e COM Module—Microsoft Windows operating system, COM client software such as
Excel®, Visual Basic®, Python, or MATLAB®

e Windows Library Module—C++, C, or Fortran compiler for Windows operating
system; Visual Studio® and C++ are needed to link with the library

e Linux Library Module—C++, C, or Fortran compiler for Linux operating system;
C++ is needed to link with the library

e C++ Module—C++ compiler

All modules are available at http://wwwbrr.cr.usgs.qov/projects/GWC coupled/phreeqgc.

Any use of trade, product, or firm names in this publication is for descriptive purposes

only and does not imply endorsement by the U.S. Government.
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1 Introduction

PHREEQC (Parkhurst and Appelo, 1999) is a geochemical reaction model that
simulates a variety of geochemical processes including equilibrium between water and
minerals, ion exchangers, surface complexes, solid solutions, and gases. The general
kinetic formulation allows modeling of non-equilibrium mineral dissolution and
precipitation, microbial reactions, decomposition of organic compounds, and other
Kinetic reactions. PHREEQC has capabilities for 1D reactive transport, including such
processes as multicomponent diffusion and transport of surface-complexing species.
Finally, PHREEQC has inverse-modeling capabilities for the evaluation of the

geochemical reactions that account for changes in water chemistry.

Because of the general geochemical speciation and reaction capabilities and the
modular organization of input, PHREEQC often has been used as a geochemical
calculation module (server) in other software programs (clients). PHREEQC has been
used to calculate saturation indices, activities, and pH in water-quality data management
software (Scientific Software Group, 2010, AquaChem), to generate predominance
diagrams and estimate parameters (Kinniburgh and Cooper, 2010, PhreePlot), and to
consider geochemical effects in watershed processes (Hartman et al., 2007, DayCent-
Chem). Most commonly, PHREEQC has been used as the geochemical module for
reactive-transport models. Reactive-transport environments include the unsaturated zone
(Jacques and Simtinek, 2004, HP1; Szegedi et al., 2008, RhizoMath; Wissmeier and
Barry, 2010a, 2010b), the saturated zone (Mao et al., 2006, PHWAT; Parkhurst et al.,

2004, 2010, PHAST; Prommer et al., 1999, PHT3D), radionuclide isolation (Ké&llvenius



and Ekberg, 2003, TACK), and acid mine drainage (Malmstrom et al., 2004, LaSAR-

PHREEQC).

The coupling of PHREEQC to client programs has been both soft—reading and
writing files by the client and server—and hard—modifying the source codes to add
routines that transfer data between the client and server. Soft coupling is likely to be slow
because of file writing and reading and because PHREEQC must read a database and
perform extra calculations to redefine solution compositions as it is initialized at each
geochemical step. PHREEQC lacks a facility to define directly essential solution data,
particularly the solution charge balance, total moles of hydrogen, and total moles of
oxygen. Hard coupling using specialized methods to set and retrieve data values can be
difficult because of the complicated data structures in PHREEQC and because of

complicated data dependencies among these structures.

This report presents PHREEQC modules designed to be used in scripting languages
and integrated into C++, C, and Fortran programs. The modules are a hybrid between soft
coupling—strings (or files) of PHREEQC input are used to specify calculations—and
hard coupling—all data transfer between server and client can be done through a well-
defined set of methods that do not require writing of files. The new modules rely on
reorganization of the original PHREEQC code and addition of several new keyword data
blocks that simplify extracting and modifying data within PHREEQC data structures. The
interface to each module is a limited number of methods that are simple and intuitive for
PHREEQC users, but retain the full capabilities of PHREEQC. Three examples are
presented of geochemical tasks in different software environments to demonstrate a few

of the possible uses for the new modules.



2 Methods

A C++ class for PHREEQC (hereafter, “IPhreeqc” is used to refer to the class or any
PHREEQC modules) was implemented in three stages. The first stage was the
development of a series of C++ classes that are equivalent to the original C structures that
contain the data for solutions and reactants—equilibrium phases, gas phases, exchangers,
surface complexers, solid solutions, and kinetic reactions. These classes were written
during the development of PHAST (Parkhurst et al., 2004, 2010) and could be used
directly by C++ programs that incorporate the IPhreeqc class. Most of the enhancements

to PHREEQC discussed in section 2.1 are based on these additional C++ classes.

The second stage required much less development and was generally a
rearrangement of the data and functions that comprise PHREEQC. All global and static
data for PHREEQC were included in a header file for the IPhreeqc class. Similarly, all C
functions were defined as methods of the class. The final stage was adding the interface,
which is a series of methods described in section 2.2, and adding the wrappers necessary

for the COM and library modules.

Thus, the IPhreeqc class is not a complete rewrite of PHREEQC with C++ classes
and methods for all calculations; rather, it is an encapsulation to limit access to the data
and functions of the original C code. The C code is essentially intact within the C++

class, but interactions with the class are limited to a well-defined set of methods.

2.1 Additions to PHREEQC

The reaction capabilities of PHREEQC and examples of their use are described in

detail in Parkhurst and Appelo (1999). In its simplest form, a reaction in PHREEQC can



be conceptualized as a solution plus a set of reactants that are put into a beaker and
allowed to react. All of the moles of elements in the solution and in the reactants are
combined in the beaker and a new system equilibrium is calculated. The reactants can
include minerals, gases, ion exchangers, reactive surfaces, and solid solutions, which
react to equilibrium, and kinetic reactions, which are functions of time and chemical
compositions. PHREEQC allows definition of the initial compositions of the solution and
reactants, calculates new compositions at the end of a reaction step, and finally saves
these new compositions for use in subsequent reaction calculations. Compositions of all

solutions and reactants are identified by a user-specified cell number.

In developing the reactive-transport model PHAST (Parkhurst and others, 2004,
2010), several new capabilities were added to PHREEQC, primarily to facilitate saving
the compositional state of a simulation and restarting it. To that end, a series of input data
blocks were devised that allow input of the exact contents of the data structures for
solutions and other reactants. For solutions, the data block is named SOLUTION_RAW
(for clarity, PHREEQC keywords are written with all capital letters); correspondingly
named data blocks exist for equilibrium phases, exchangers, surfaces, solid solutions, gas

phases, and kinetics.

A new keyword data block, DUMP, is used to write the state of any solution or
reactant in the RAW format. Thus, the output from dumping a solution composition is a
string or file that contains a SOLUTION_RAW data block, and is suitable for use as

input to IPhreeqc.

In addition to the SOLUTION_RAW input data block, a SOLUTION_MODIFY data

block is available. It uses exactly the same format as SOLUTION_RAW, but does not



require a complete set of data. Thus, only data items that need to be changed can be
updated. It is expected that the SOLUTION_MODIFY will be used to update the element
composition of a solution following a transport calculation, without redefining some parts
of the solution structure (for example, calculated quantities such as total alkalinity, mass
of water, Pitzer activity coefficients, or, optionally, initial estimates of activities of the

master species). Equivalent MODIFY data blocks are available for all other reactants.

The DELETE data block allows deleting some or all solution and reactant
definitions. The COPY data block allows solutions and reactants to be replicated.
Together, DUMP, MODIFY, DELETE, and COPY data blocks allow direct management

of the solutions and reactants defined to PHREEQC.

The RUN_CELLS data block streamlines the process of setting up, running, and
saving the results of a calculation for a cell. For cells selected by the data block
specifications, all of the reactants with a given cell number are brought together and
reacted, after which, the resulting compositions of the solution and reactants are saved
back to the given cell number. Thus, “RUN_CELLS; 1-2” will cause solution 1 to react
with all reactants numbered 1 and the compositions of the solution and reactants in cell 1

will be redefined to be the result of the reaction; similarly for cell 2.

2.2 IPhreeqc Class Methods

A client interacts with an IPhreeqc module through a set of methods. The key
methods are listed in Table 1. These methods allow initializing the module and reading a
thermodynamic database, running PHREEQC input (strings or files), and retrieving

results from simulations. Other methods provide error and warning messages, get lengths



of data items—number of rows, number of columns, number of lines—and control the
writing of PHREEQC output files. Appendix 1 contains a complete list of methods for a

Fortran module.

An IPhreeqc module is created in different ways depending on the software
environment where it is used. Multiple instances of an IPhreeqc class can be created
within the client program in all programming environments, even in C and Fortran. After
a module is created, the LoadDatabase (for clarity, all IPhreeqc method names are
written in bold font) or LoadDatabaseString method reads a thermodynamic database
from a file or string, respectively. When the database has been read, a module is ready to
perform PHREEQC calculations. Using LoadDatabase or LoadDatabaseString a

second time will re-initialize the module and remove all data stored in it.

PHREEQC input can be defined and run in three different ways with an IPhreeqc
module. First, the AccumulateLine method can be called sequentially to append
PHREEQC input to an input buffer in IPhreeqc. When the entire input has been
accumulated, it is run with the RunAccumulated method. The second way to run
simulations is to define PHREEQC input in a string within the client program. This string
is then submitted and run with the RunString method. Finally, it is possible to run
PHREEQC input that has been saved in a file by using the RunFile method. Because
reading and writing files to disk is slow, running simulations with many calls to RunFile
IS expected to be slower than using RunString and RunAccumulated with internally

generated strings.

The SELECTED_OUTPUT and USER_PUNCH data blocks are used in a batch

PHREEQC run to identify data to be written to a selected-output file. The data written



can include most quantities calculated by the geochemical model—dissolved
concentrations of elements, concentrations of aqueous species, activities of aqueous
species, moles of minerals, and moles of kinetic reactants, for example. IPhreeqc makes
special use of the data defined by the SELECTED OUTPUT and USER_PUNCH data
blocks, and allows this array of data to be returned to the client program by two methods
that do not require reading or writing files. The GetSelectedOutputValue method is
available in all modules and retrieves an individual data item at a given row and column
from the array of selected-output results that was generated by the last call to a
RunAccumulated, RunString, or RunFile method. The array has a row for every
geochemical calculation that was performed and columns as defined by the
SELECTED_OUTPUT and USER_PUNCH data blocks. The COM module has an
additional method, GetSelectedOutputArray, which returns the entire array of the

selected-output data.

A data item in the selected-output array may be an integer, real, or string value.
IPhreeqc implements a simple variant object, which can contain any of these three data
types. The IPhreeqc module requires slightly different handling of this variant object
depending on whether the module is called as a COM, or as C++, C, or Fortran program

elements.

A new PHREEQC capability to write (DUMP) data values allows access to the
complete internal definition of each solution and reactant. The dumped data values are
written in keyword data blocks that are suitable for input back into IPhreeqc (RAW data
blocks, section 2.1). The GetDumpString method allows the raw keyword data blocks to

be captured by the client program. (In Fortran, the dump string must be captured line-by-
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line with the GetDumpStringLine method.) The dumped data can be modified and
reintroduced to an IPhreeqc module by use of the MODIFY data blocks (section 2.1) or
transferred to another IPhreeqc module. The DUMP and the set of MODIFY keyword
data blocks provide the basis for “get” and *“set” methods, whereby the client program

can control the data items of the module’s solutions and reactants.

2.3 The COM Module

The COM module was implemented using Microsoft's Active Template Library
(ATL). Through the use of C++ templates ATL provides standard implementations
required by all COM objects. Each method and property was implemented by wrapping
calls to the underlying IPhreeqc C++ methods. Methods containing string arguments
required additional code to handle the necessary conversions between native COM
strings (BSTR data type) and standard C strings. It also was necessary to convert the
simplified IPhreeqc variant into a COM variant (VARIANT data type) for the
GetSelectedOutputValue and GetSelectedOutputArray methods. The
GetSelectedOutputArray method additionally uses an array (SAFEARRAY data type)

of COM variants to return the selected-output array.

Programming environments designed to support COM objects (Visual Basic®,
Python, or MATLAB®, for example) are able to use these COM variants directly and
interchange them with their own native data types.

2.4 C++, C, and Fortran Modules

IPhreeqc libraries are available that allow use of IPhreeqc by C++, C, and Fortran

programs; a library and equivalent DLL are available for Windows operating systems and
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source code for a library is available to be compiled for Linux or other Unix operating
systems. The same Windows library (or DLL) or Linux library is linked no matter which
of the three programming languages is used for the client program. However, each
programming language requires a different header or “include” file in the client program.
Header files for C++ and C and include files for Fortran77 and Fortran90 are included in

the distribution of each of the library modules.

The use of the IPhreeqgc methods is slightly different for C++, C, and Fortran to
comply with the syntax of each language. The GetSelectedOutputArray method is not

available in C++, C, or Fortran modules.

2.4.1 C++ Modules

Instances of the IPhreeqc C++ class can be used by linking with the IPhreeqc library.
Alternatively, if the client of the IPhreeqc module is a C++ program, then the source code
for the module could be compiled directly into the client program. In this case, it is
possible to use the internal C++ classes for solutions and equilibrium phase, gas phase,
exchange, surface, solid solution, and kinetic reactants. Use of these and other C++
classes included in the source code for IPhreeqc could simplify data storage and
manipulation. When compiled into the client, it also is possible to extend the set of
methods for the IPhreeqc class (or the other classes) to simplify data communication

between the client and the IPhreeqc class.

The header file IPhreeqc.hpp is needed to compile C++ code that uses the IPhreeqc
class, whether the C++ class is defined by integrating the source code or by using the

IPhreeqc library. The class is instantiated by using normal C++ syntax for class objects.
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Methods are called by using the standard C++ syntax for methods of objects. For a C++
module, the GetSelectedOutputValue method returns the IPhreeqc variant, which can
contain an integer, double, string value, or error code. The definition of the variant and its

methods are defined in the header file, Var.h.

2.4.2 C Modules

All methods for the C modules are functions. The client program must include the
header file IPhreeqc.h, which includes the prototypes for the methods and the definition
of the IPhreeqc variant. The GetSelectedOutputValue method returns the IPhreeqc

variant.

2.4.3 Fortran Modules

The methods listed in Appendix 1 are subroutine and function calls. Fortran90 client
programs must include the file IPhreeqc.f90.inc, which defines constants and the Fortran
interfaces for the IPhreeqc methods. Fortran77 programs must include the file

IPhreeqc.f.inc to define the constants and function types.

The IPhreeqc variant was not implemented in Fortran. Instead, the argument list of
GetSelectedOutputValue contains three additional arguments, an integer type of the
selected-output value (indicating integer, real, string, or error code), a real number, and a
string value. If the type of the return value is string, the real number is not meaningful. If
the type is integer or real, the value is returned as a real number in the real argument and

the value is written as a string into the string argument.
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3 Discussion

A wide variety of uses are possible for the IPhreeqc modules. Three general classes
of users are envisioned: (1) researchers who use PHREEQC for interpretation of
laboratory or field data and would like to use Excel® to store and plot results, (2)
researchers who need more complex geochemical calculations and could use the
flexibility of embedding a geochemical module in a scripting language such as Python or
Visual Basic®, and (3) program developers who need a geochemical module for reactive-
transport codes or who need to incorporate a geochemical calculation [calcium carbonate
precipitation potential (CCPP) or base neutralizing capacity, for example] into their
software. Three examples are given to demonstrate how IPhreeqc might be used by each
of these three classes of users. The examples are made as simple as possible, while still

demonstrating the utility of IPhreeqc in three different software environments.

3.1 Use of a COM Module in Excel®

Once installed on a computer, the IPhreeqc COM module can be used in Excel®
Visual Basic for Applications® (VBA) macros. One common use for PHREEQC is to
calculate saturation indices for a set of chemical analyses. Figure 1 (top) shows a
PHREEQC input file that has been entered on sheet 1 of an Excel® workbook. The
analytical data are entered in a set of columns headed by the PHREEQC nomenclature for
elements and element valence states. Lines 1-2 and 7-10 are added to make a complete
PHREEQC input set that performs speciation calculations and generates selected output
that contains the saturation indices for calcite, dolomite, and gypsum and the log partial

pressure for CO(g).
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Table 2 contains a VBA macro that creates the PHREEQC module, formats the data
in sheet 1 as a PHREEQC input string, runs the string, and places the results in sheet 2 of
the Excel® workbook. The phreeqc.dat database is assumed to be available in the
directory containing the Excel® spreadsheet, but the macro could be modified with a path
to a PHREEQC database. In the example, saturation indices are calculated as shown in
figure 1 (bottom). In terms of the macro, no restriction is placed on the input that is
defined in sheet 1; any PHREEQC input set could be defined on sheet 1 and the macro

would place the selected-output results in sheet 2.

3.2 Use of a Module in Python

This example uses the COM module with the Python scripting language in a
Windows environment. The task in the example is to calculate the solubility of gypsum
as a function of NaCl concentration for two different aqueous models—the ion-
association model, as developed in WATEQA4F (Ball and Nordstrom, 1991) and
implemented in wateq4f.dat, and the specific ion interaction approach of Pitzer (1973), as

originally coded in PHRQPITZ (Plummer et al., 1988) and implemented in pitzer.dat.

The Python script for the example is shown in table 3. The main program (last block
of code) defines PHREEQC input for the simulation and specifies that the solubility of
gypsum be calculated for increments of 0.1 moles of NaCl. The function show_results
creates an IPhreeqc module for each database, runs the simulation in each module, and
retrieves the data in the variables nacl_conc, wateq4f values, and pitzer_values. The
Python utility matplotlib (http://matplotlib.sourceforge.net/) is then used to produce a plot
that compares the two results (figure 2). The specific ion interaction approach is a good

fit to experimental data (Harvie and Weare, 1980). The ion-association model is generally
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applicable at lower ionic strengths and, indeed, the results of the ion-association model

deviate from the more accurate Pitzer results at high ionic strengths.

3.3 Use of a Module in Fortran

The third example demonstrates use of IPhreeqc in a Fortran90 program. An
equivalent C program is provided in Appendix 2. The program works with two cells that
represent a reactive-transport model. Initial conditions are defined in the file ic (table 4),
where both cells initially are filled with pure water. Cell 1 has an equilibrium-phases
definition that contains carbon dioxide with a partial pressure of 10™°, whereas cell 2 has
an equilibrium phases definition that contains calcite. The file ic also contains a definition
for SELECTED_OUTPUT that writes the total number of moles of H, O, Ca, and C, plus
the pH and saturation ratio (SR) for calcite (IAP/K, where IAP is ion activity product and

K is the equilibrium constant).

In the Fortran90 program (table 5), the phreeqc.dat database is loaded, and the initial
conditions file is run, which places pure water in each of the two cells. Then the solution
and reactants (equilibrium phases) for cell 1 are reacted with the RUN_CELLS data
block, which produces a water in equilibrium with a soil-zone partial pressure of carbon

dioxide.

In place of a true dispersive-transport step, the solution from cell 1 is simply
advected to cell 2. The data from cell 1 are retrieved in the subroutine ExtractWrite by
sequentially retrieving the columns of the selected-output array. After retrieving the data,
the pH and saturation ratio for cell 1 are written to the output screen. Returning to the

main program, the SOLUTION_MODIFY data block is constructed, which specifies the
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total moles of elements in cell 2 to be equal to those just retrieved from cell 1. The
RUN_CELLS keyword data block is used to equilibrate the new water composition in
cell 2 with the reactants in cell 2, namely calcite. The results of this calculation are again
retrieved and written by the subroutine ExtractWrite. The results show that the water in
cell 1 has a pH of 4.66 and a calcite saturation ratio of 0.0 (because calcium is absent),
whereas the water in cell 2 has a pH of 7.68 and a calcite saturation ratio of 1.0

(equilibrium with calcite).

Some care is needed with the units of solutions and reactants when using IPhreeqc
for reactive-transport simulations. PHREEQC stores all quantities of elements,
exchangers, equilibrium phases, and other reactants, in units of moles, not in units of
concentration. Although PHREEQC does all of its calculations with solutions in terms of
molality (mol/kg water), only the numbers of moles of each element and the mass of
water are stored; a solution definition may have a mass of water that differs substantially
from 1.0 kg. Thus, solution compositions are defined by the number of moles of
elements, including H and O, and the equivalents of charge imbalance. In the file ic (table
4), the function TOTMOLE was used, which returns the total number of moles of an
element in solution. The total numbers of moles in solution are the quantities needed for
the SOLUTION_MODIFY data block that was used in the advection step of the example
(table 5). For reactive-transport calculations, it may be necessary to convert the solution
compositions to concentration units (mol/L, ppm, or mass fraction, for example) for the
transport calculation and then back to moles for the IPhreeqc calculations. Alternatively,
fluid flow and solute transport with species-independent diffusion can be considered as

an assembage of fluxes of individual elements, and the governing equations can be
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derived in terms of transport of moles of individual elements (Wissmeier and Barry,
2008). Regardless of the transport equations selected, it is necessary to transport H, O,
and charge, in addition to any other elements in the system to maintain complete solution

composition and correct charge imbalances.

3.4 Parallelized Calculations Using IPhreeqc Modules

Because IPhreeqc modules are independent objects in the sense of object-oriented
programming, parallelization with threads or multiple processes is straightforward. Here,
multiple processors are discussed, but the use of threads is similar. In general, the
strategy is to start multiple processes, each of which creates an IPhreeqc module. Each
module is then assigned part of the geochemical calculation tasks. Data are passed among
the processes, either by queues or messages. The passed data would be primarily
chemical compositions, which could be DUMP strings, MODIFY data blocks, or arrays

of elemental compositions.

An example calculation (parallel_advect.py) using the multiprocessing package of
Python is presented in the supplemental material. The example reproduces the results of
the advective case of example 11 in the PHREEQC manual (Parkhurst and Appelo,
1999). The Python script uses multiple processes and queues to divide the geochemical

calculations for a column of cells equally among a specified number of processes.

4 Summary and Conclusions

PHREEQC can simulate a wide range of reactions between water and solids,
including reactions with minerals, gases, ion exchangers, surface complexers, and solid

solutions. Irreversible kinetic reactions also can be simulated. Because of the generality
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and ease of use, PHREEQC has been integrated as the geochemical calculation module in
several programs; however, the integration of PHREEQC into other codes has been
difficult and time consuming. IPhreeqc is a set of modules that have been developed
specifically to allow easy integration of PHREEQC into other software. All of the
simulation and data-storage capabilities of PHREEQC are accessible in IPhreegc modules

through a limited set of methods.

IPhreegc modules can be used in a number of software environments. The COM
module can be used by any software that supports the COM interface—Excel® (Visual
Basic for Applications®), Python, or MATLAB® for example. The C++ class for
IPhreeqc can be compiled into C++ programs, where the module and its underlying
classes can be used or subclassed directly. Alternatively, libraries and DLLs allow the
IPhreegc modules to be used in C++, C, and Fortran programs on Windows or Linux
operating systems. The modularity of IPhreeqc allows easy implementation of parallel

processing for computationally intensive geochemical simulations.

The interface to the modules is a relatively small set of methods, which combined
with enhancements to PHREEQC, implements all of the capabilities of PHREEQC and
allows all of the underlying data that define solutions and reactants to be retrieved and
modified. While it is admittedly somewhat cumbersome to generate strings to perform all
of the IPhreeqc calculations, the string approach has the advantage that the interface is
simple and intuitive. In addition, the interface methods should not need modification,

even if new features are added to PHREEQC.

IPhreeqc can be used for a variety of geochemical simulation tasks, including

analysis of field and laboratory data, comparison and fitting of thermodynamic data, and
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reactive-transport simulations. Two applications have successfully used IPhreeqc
modules: Kinniburgh and Cooper (2010) have integrated the library module into
PhreePlot to plot predominance diagrams and fit thermodynamic data, and Wissmeier and
Barry (2010b) have used the COM module with MATLAB® and COMSOL
Multiphysics® to simulate reactive-transport in the unsaturated zone. The module may
prove useful in a number of other fields, including water treatment, contaminant

mitigation, and chemical engineering.
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Appendix 1

A complete list of methods for IPhreeqc Fortran modules is given in table Al. The
most important methods have been used in the examples in the text. These methods
include CreatelPhreeqc, LoadDatabase, RunFile, RunString, RunAccumulated,
GetSelectedOutputValue, and DestroylPhreegc. Additional information for the set of
Fortran methods is provided here. Note that additional methods are available to COM, C,
and C++ programs that are not available in Fortran: GetDumpString, GetErrorString,

GetWarningString, and GetOutputArray (COM only).

Most methods return an integer value. Non-negative return values indicate successful
completion of the method. If the integer is less than zero, an error has occurred during the
invocation of the method and the cause of the error can be determined by using the
OutputErrorString method or by a call to the GetErrorStringLineCount method and
sequential calls to the GetErrorStringLine method. An IPhreeqc run also can produce
warnings, which are conditions that do not cause failure of the run, but may indicate
problems with input or difficulties in obtaining a numerical solution to the input
definitions. Warnings can be obtained with calls to the GetWarningStringLineCount

method and sequential calls to the GetWarningStringLine method.

An IPhreeqc module has several properties that control file output from the module.
An IPhreeqc run can write data to an output file, a selected-output file, an error file, a
dump file (complete item-by-item output of solution or reactant data), and a log file
(rarely used). The methods SetOutputFileOn , SetSelectedOutputFileOn,

SetErrorFileOn, SetDumpFileOn, and SetLogFileOn can be used to set the properties
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that activate or suspend writing to the respective files. The status of the properties related
to file writing can be obtained by the methods GetOutputFileOn

GetSelectedOutputFileOn, GetErrorFileOn, GetDumpFileOn, and GetLogFileOn.

Several methods apply to the input buffer that is used to accumulate lines of
PHREEQC input. The AccumulateLine method appends one or more lines to the input
buffer. The OutputAccumulatedLines method prints the state of the input buffer and the
ClearAccumulatedLines method clears the buffer. The input can be run with the

RunAccumulated method.

Methods related to retrieving results from an IPhreeqc run include:
GetSelectedOutputRowCount, which returns the number of rows in the selected-output
array; GetSelectedOutputColumnCount, which returns the number of columns in the
selected-output array; and GetSelectedOutputValue, which returns a specified row-

column value from the selected-output array.

It can be convenient to have a list of elements that have been defined by input to an
IPhreeqc module. The GetComponentCount and GetComponent methods allow
retrieval of all the elements that are presently defined in the module in solutions and
reactants. This is not the complete list of components defined in the database, but the list
of all elements that have been used in SOLUTION, EQUILIBRIUM_PHASES,
EXCHANGE, GAS_PHASE, KINETICS, REACTION, SOLID_SOLUTION, and
SURFACE data blocks. Solutions or reactants that have been deleted with the DELETE
keyword data block are not currently defined and are not considered. This list could be
used as the list of components (in addition to H, O, and charge) that need to be

transported in multicomponent reactive-transport simulations.
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The final methods described here are related to the dump string of the module. The
dump string contains the results from using the DUMP keyword in PHREEQC input.
First, the dump string must be activated before an IPhreeqc run with a call to the
SetDumpStringOn method. After the IPhreeqc run, the dump string can be retrieved by
the client program line by line. The GetDumpStringLineCount method returns the
number of lines in the dump string. The GetDumpStringLine method returns a specified

line from the dump string.

Appendix 2

Table A2 gives a C program that is equivalent to the Fortran program of the third
example. Apart from the differences in language syntax, there is one important difference
in the C IPhreeqc module related to memory usage. Whereas, no memory problems can
occur in Fortran or COM usage, a variable of type VAR will leak memory in C or C++ if
it is used to store a string, and it is not cleared before it goes out of scope. A memory leak
is a condition where memory is not freed even though it is no longer used. Memory leaks
cause an accumulation of unusable computer memory, and a consequent decrease in the
memory available for program use. Although the memory leak only will occur in C or
C++ when using a variable of type VAR to store a string, it is good practice to clear any
type VAR variable with VarClear after each use, as is done near the end of the void
ExtractWrite function. Note that if a variable of type VAR is assigned a new value, it

automatically will be cleared before the new value is stored.
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Figures:

Figure 1. PHREEQC input in sheet 1 of workbook (top) is used in an Excel® macro to

produce selected output in sheet 2 (bottom).

SOLUTION_SPREAD
-units mg/L
Temp pH Ca Mg Na Cl S(6) Alkalinity
18.7 6.86 114.7 8.109 12.03 2.787 19.007 298
18.4 6.9 95.79 49.58 20.39 28.327 31.544 348
18.3 6.91 80.81 39.61 4.934 8.37 10.783 329
SELECTED_OUTPUT
-reset false
-Sl Calcite Dolomite Gypsum C0O2(q)
END
si_Calcite si_Dolomite si_Gypsum si_CO2(g)
-0.10 -1.08 -2.13 -1.36
-0.11 -0.24 -2.06 -1.34
-0.17 -0.39 -2.55 -1.37
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Figure 2. Solubility of gypsum in sodium chloride solutions as calculated in Python with

two IPhreeqc modules using the wateg4f.dat and the pitzer.dat databases.
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Tables:

Table 1. Key methods for IPhreeqc modules

Method

Function

LoadDatabase(FileName)
LoadDatabaseString(Input)
AccumulateLine(String)

RunAccumulated()

RunFile(FileName)
RunString(InputString)
GetSelectedOutputArray()

GetSelectedOutputValue(Row,
Column)

GetDumpsString()

Reads the database from the specified file
Reads the database from the input string
Append the input string to the input buffer for the module

Runs PHREEQC based on the input buffer defined by calls to
AccumulateLine

Runs PHREEQC based on the input in the specified file
Runs PHREEQC based on the specified input string

Returns an array with the selected-output results from the last run
(RunAccumulated, RunFile, or RunString). (This method is
available only in the COM module)

Returns the value from the specified row and column of the
selected-output array, which contains results from the last run
(RunAccumulated, RunFile, or RunString)

Returns a string containing the output as defined by the DUMP
data block of the last RunAccumulated, RunFile, or RunString
command
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Table 2. Excel® Visual Basic for Applications® macro that takes PHREEQC input from

sheet 1 of a workbook and puts selected output in sheet 2 of workbook

Sub RunPhreeqc()
On Error GoTo ErrHandler:
ChDir ActiveWorkbook.Path
Set Phreeqc = CreateObject('I1PhreeqcCOM.Object')
Db = "phreeqc.dat"
Phreeqc.LoadDatabase (Db)

"Format input from sheetl

Dim Istring As String

Worksheets("'Sheetl™) .Activate

FirstRow = ActiveSheet.UsedRange.Row

FirstColumn = ActiveSheet.UsedRange.Column

For r = FirstRow To (FirstRow + ActiveSheet.UsedRange.Rows.Count)
For ¢ = FirstColumn To (FirstColumn + ActiveSheet.UsedRange.Columns.Count)

Istring = Istring & CStr(Cells(r, c)) & vbTab

Next c
Istring = Istring & vbNewLine

Next r

"Run and save selected output to sheet2

Phreeqc.RunString (Istring)

arr = Phreeqc.GetSelectedOutputArray()

Worksheets(*'Sheet2™) .Activate

Range(Cells(1, 1), Cells(Phreeqc.RowCount, Phreeqc.ColumnCount)) = arr
MsgBox "‘Phreeqc ran successfully.”

Exit Sub

ErrHandler:
MsgBox "Phreeqc errors: " & Phreeqc.GetErrorString()
End Sub
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Table 3. Python script that plots the solubility of gypsum as a function of NaCl

concentration as calculated by the Pitzer and WATEQ4F databases

""" Compares gypsum solubility for WATEQ4F and Pitzer databases.
# Import standard library modules first.

import os

# Then get third party modules.

from win32com.client import Dispatch

import matplotlib.pyplot as plt

def selected_array(db_path, input_string):
""" Load database via COM and run input string.
dbase = Dispatch("1PhreeqcCOM.Object™)
dbase.LoadDatabase(db_path)
dbase .RunString(input_string)
return dbase.GetSelectedOutputArray()

def show_results(input_string):
"'"'Get results for different databases
wateg4f_result = selected_array("wateg4f.dat®, input_string)
pitzer_result selected_array("pitzer.dat®, input_string)
# Get data from the arrays.
nacl_conc [entry[0] for entry in wateg4f_result][1:]
wateg4f_values [entry[1] for entry in wateg4f _result][1:]
pitzer_values [entry[1] for entry in pitzer_result][1:]
# Plot

plt.plot(nacl_conc, pitzer_values, "k", nacl_conc, wateq4f_values, "k--")

plt.axis([0, 6, 0, -06])

plt.legend(("PITZER", "WATEQ4F"), loc = (0.4, 0.4))
plt.ylabel ("GYPSUM SOLUBILITY, MOLES PER KILOGRAM WATER")
plt.xlabel("NaCl, MOLES PER KILOGRAM WATER™)

plt.show()

if _name__ == "_ main__":
# This will only run when called as script from the command line
# and not when imported from another script.
INPUT_STRING = """'"*
SOLUTION 1
END
INCREMENTAL_REACTIONS
REACTION
NaCl 1.0
0 60*0.1 moles
EQUILIBRIUM_PHASES
Gypsum
USE solution 1
SELECTED_OUTPUT
-reset false
-total Na S(6)

show_results(INPUT_STRING)
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Table 4. Initial conditions and selected-output definitions for Fortran90 example

# File ic

SOLUTION 1-2

END

EQUILIBRIUM_PHASES 1
C02(g) -1.5 10

EQUILIBRIUM_PHASES 2
Calcite O 10
SELECTED_OUTPUT
-reset false
USER_PUNCH
-Heading charge H O C Ca pH SR(calcite)
10 PUNCH charge_balance
20 PUNCH TOTMOLE("'H'™), TOTMOLE('0'™), TOTMOLE(''C'), TOTMOLE('‘'Ca'™)
30 PUNCH -LA(''H+"), SR('calcite")
END

32



Table 5. Fortran90 program that performs advection and chemical reactions for two cells

module Su
integer
real
charact
integer
contain

subrout

inclu

integ
do j

1 H

ler

if(

enddo

bs
(kind=4), dimension(7) :: vt
(kind=8), dimension(7) :: dv
er (Ien=100), dimension(7) :: sv
o Id
s
ine ExtractWrite(cell)

de "IPhreeqc.f90.inc"

er (kind=4), intent(in) :: cell

=1, 7

eadings are on row O

r = GetSelectedOutputValue(ld,1,j,vt(d),.dvd),sv(g))
lerr .ne. IPQ_OK) call EHandler()

write(*,"(a,i12/72(6x,a,f7.2))'") "Cell",cell,"pH:",dv(6),"SR(calcite):",dv(7)

end sub

subrout

inclu
call
stop

end sub

end modul

routine ExtractWrite

ine EHandler()
de "IPhreeqc.f90.inc"
OutputErrorString(ld)

routine EHandler
e Subs

program Advect

use Sub
include

S
"1Phreeqc.f90.inc"

character(len=1024) Istring

ICreate m
Id = Cr

odule, load database, define initial conditions and selected output
eatelPhreeqc()

if (LoadDatabase(ld, "phreeqc.dat') .ne. 0) call EHandler()

If (Run

TRun cell
if (Run

File(ld, "ic™) .ne. 0) call EHandler(Q)

1, extract/write result
String(ld, "RUN_CELLS; -cells; 1; END"™) .ne. 0) call EHandler()

call ExtractWrite(l)

TAdvect c
lerr
lerr
lerr
lerr
lerr
lerr
lerr
lerr =
if (Run

ell 1 solution to cell 2, run cell 2, extract/write results
AccumulateLine(ld, "SOLUTION_MODIFY 2')

AccumulateLine(ld, -cb " // sv(1))
AccumulateLine(ld, ™ -total_h " // sv(2))
AccumulateLine(ld, -total_o " // sv(3))
AccumulateLine(ld, ™ -totals ")

AccumulateLine(ld, C " // sv(4))
AccumulateLine(ld, " Ca " // sv(b))

AccumulateLine(ld, "RUN_CELLS; -cells; 2; END'")
Accumulated(ld) .ne. 0) call EHandler(Q)

call ExtractWrite(2)

IDestroy module

it (Des
end progr

troylPhreeqc(ld) .ne. 0) call EHandler()
am Advect
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Table Al. Complete list of methods for a Fortran90 IPhreeqc module

[Id, number returned by the CreatelPhreeqc function; N, integer used to refer to the Nth

member of a list; col, column number; comp, variable to hold the Nth component name,

logical, a value of true or false; Vtype,integer variable; Dvalue, real variable ; Svalue,

string variable]

Method

Usage

Function AccumulateLine(ld, String)
Function AddError(ld, String)

Function AddWarning(ld, String)

Function ClearAccumulatedLines(ld)

Function CreatelPhreeqc()

Function DestroylPhreeqc(ld)

Subroutine GetComponent(ld, N, Comp)
Function GetComponentCount(ld)

Function GetDumpFileOn(ld, Logical)
Subroutine GetDumpStringLine(ld, N, Line)
Function GetDumpStringLineCount(ld)
Function GetDumpStringOn(ld, Logical)
Function GetErrorFileOn(ld, Logical)
Subroutine GetErrorStringLine(ld, N, Line)
Function GetErrorStringLineCount(ld)
Function GetLogFileOn(ld, Logical)

Function GetOutputFileOn(ld, Logical)
Function GetSelectedOutputColumnCount(ld)
Function GetSelectedOutputFileOn(ld, Logical)
Function GetSelectedOutputRowCount(ld)

Function GetSelectedOutputValue(ld, Row, Col,
Vtype, Dvalue, Svalue)

Subroutine GetWarningStringLine(ld, N, Line)
Function GetWarningStringLineCount(ld)
Function LoadDatabase(ld, FileName)
Function LoadDatabaseString(ld, String)

Appends one or more lines to the input buffer

Appends the string to the error string in the module and
increments the error count

Appends the string to the warning string in the module

Clears the input buffer of the module

Create and initialize a module

Destroy a module

Retrieve specified component name

Determine number of components currently used in the module
Retrieve the print setting for the dump file

Retrieve line from the lines generated by the DUMP data block
Retrieve number of lines generated by the DUMP data block
Retrieve the setting for saving dump information in a string
Retrieve the print setting for the error file

Retrieve specified line from the error messages

Retrieve number of lines in the error messages

Retrieve the print setting for the log file

Retrieve the print setting for the output file

Retrieve number of columns in selected output

Retrieve the print setting for the selected-output file

Retrieve number of rows in selected output

Retrieve selected-output value from specified row and column

Retrieve specified line from the warning messages
Retrieve number of lines in the warning messages
Reads the database from file

Reads the database from string
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Subroutine OutputAccumulatedLines(Id)
Subroutine OutputErrorString(ld)
Subroutine OutputWarningString(ld)
Function RunAccumulated(ld)

Function RunFile(ld, FileName)
Function RunString(ld, String)

Function SetDumpFileOn(ld, Logical)
Function SetDumpStringOn(ld, Logical)
Function SetErrorFileOn(ld, Logical)
Function SetLogFileOn(ld, Logical)
Function SetOutputFileOn(ld, Logical)

Function SetSelectedOutputFileOn(ld, Logical)

Display the accumulated input buffer
Display errors from the last run

Display warnings from the last run

Run the input accumulated in the input buffer
Run from a file

Run from a string

Set the switch for printing to the dump file
Set the switch for saving dump information in a string
Set the switch for printing to the error file
Set the switch for printing to the log file

Set the switch for printing to the output file

Set the switch for printing to the selected-output file
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Table A2. C program that performs advection and chemical reactions for two cells

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <IPhreeqc.h>
int id;
int vt[7];
double dv[7];
char sv[7][100];
char buffer[100];
void ExtractWrite(int cell)
{
VAR v;
int j;
Varlnit(&v);
for g =0; j <7; ++)) {
GetSelectedOutputvValue(id, 1, j, &v);
vt[j] = v-type;
switch (vt[jD) {
case TT_DOUBLE:
dv[j] = v.dval;
sprintf(sv[j]l, "%23.15e", v.dval);
break;
case TT_STRING:
strcpy(sv[j], v-sval);
break;

}
VarClear(&v);
}
printf('Cell %d \n\tpH: %4.2FA\tSR(calcite): %4.2fA\n", cell, dv[5], dv[6]);

3

void EHandler(void)

{
OutputErrorString(id);
exit(EXIT_FAILURE);

const char *ConCat(const char *strl, const char *str2)
{

strcpy(buffer, strl);

return strcat(buffer, str2);

int main(void)

/* Create module, load database, define initial conditions and selected output
id = CreatelPhreeqc(Q);

if (LoadDatabase(id, "phreeqc.dat'™) != 0) EHandler();

if (RunFile(id, "ic'"™) != 0) EHandler();

/* Run cell 1, extract/write result */
if (RunString(id, "RUN_CELLS; -cells; 1; END') != 0) EHandler();

ExtractWrite(l);

/* Advect cell 1 solution to cell 2, run cell 2, extract/write results */
AccumulateLine(id, ConCat('SOLUTION_MODIFY 2", "))
AccumulateLine(id, ConCat(" -cb ", sv[oD));
AccumulateLine(id, ConCat(" -total_h ", sv[1i]));
AccumulateLine(id, ConCat(" -total_o ", sv[2]);
AccumulateLine(id, ConCat(" -totals ", e ));
AccumulateLine(id, ConCat(" C ", sv[3D);
AccumulateLine(id, ConCat(" Ca ", sv[4]));
AccumulateLine(id, ConCat('RUN_CELLS; -cells; 2; END", " ));
if (RunAccumulated(id) !'= 0) EHandler();

ExtractWrite(2);

/* Destroy module */
if (DestroylPhreeqc(id) != IPQ_OK) EHandler();
exit(EXIT_SUCCESS);



37



	Modules Based on the Geochemical Model PHREEQC for Use in Scripting and Programming Languages
	Abstract
	Keywords
	Software Requirements
	1 Introduction
	2 Methods
	2.1 Additions to PHREEQC
	2.2 IPhreeqc Class Methods
	2.3 The COM Module
	2.4 C++, C, and Fortran Modules
	2.4.1 C++ Modules
	2.4.2 C Modules
	2.4.3 Fortran Modules


	3 Discussion
	3.1 Use of a COM Module in Excel®
	3.2 Use of a Module in Python
	3.3 Use of a Module in Fortran
	3.4 Parallelized Calculations Using IPhreeqc Modules

	4 Summary and Conclusions
	5 Acknowledgements
	6 References
	Appendix 1
	Appendix 2

