HOW TO INSTALL THE TOPOFLOW 3.5 PYTHON PACKAGE
AND DEPENDENCIES (FEB. 12, 2017)

SCOTT D. PECKHAM

Step 1. Install Python 2.7 and commonly-used Python packages. One of the easiest ways
to do this is to install Anaconda, a complete, open-source Python platform. Anaconda
supports MacOS, Linux and Windows. You can download the installers from:

https:/ /www.continuum.io/downloads. The installation includes over 100 Python packages
that support scientific work. This includes all but one of the packages needed by TopoFlow,
including: NumPy, SciPy, setuptools, pip and hbpy. It also includes Matplotlib, Jupyter,
Pandas, curl, wheel and many others. Anaconda also includes a package and dependency
manager called conda, which makes it easy to install any of 620 other Python packages
(e.g. netCDFY).

Step 2. Install the netCDF4 module. TopoFlow uses this module to write model output
to standardized netCDF files. The netCDF4 module relies on the hopy package that is
included with Anaconda.

$ conda install netCDF4

You can check whether the package was installed correctly by typing python in a terminal
window (to start a Python session) and then typing import netCDF} at the Python prompt.

Step 3. Download the TopoFlow Python package (v. 3.5) from GitHub.
Download it from: https://github.com/peckhams/topoflow as a zip file and unzip it.

Step 4. Install the TopoFlow Python package. There are many advantages to installing
TopoFlow as a Python package, but it is also helpful to retain the option of making changes
to the TopoFlow source code without rebuilding the package. It is therefore recommended
to install TopoFlow as an “editable install”. This is done by copying the entire TopoFlow
package folder (TopoFlow_3.5) someplace convenient (e.g. your home directory or Dropbox
folder). This folder contains a file called setup.py used for installation. Then, in a terminal
window, type the commands

$ cd TopoFlow_3.5
$ pip install --editable ./

A folder with extension .egg-info will be created in the TopoFlow_3.5 folder that allows it
to be recognized as a Python package. (Note: A similar but slightly different method is to
use the command: python setup.py develop instead of python setup.py install .)

1



2 SCOTT D. PECKHAM

Step 5. Perform a test run of TopoFlow with the default data set Treynor. TopoFlow
allows you to specify different directories for model input and output files in the CFG files.
The input files for the Treynor data set are in the examples/Treynor_Iowa_30m folder of the
TopoFlow package. However, output files are written to a directory in your home directory
called TF_Output/Treynor. So first, create this directory with the commands

$ cd; mkdir TF_Output; mkdir TF_Output/Treynor
Next, open a terminal window and type:
$ python -m topoflow

You can edit the EMELI provider file (with extension providers.txt) to specify different
components to use for the various hydrologic processes. Each process component is config-
ured with its own configuration file, or CFG file, which are text files with extension .cfg.

Step 6. Run TopoFlow with your own data sets. Acquire a DEM for your study site
and create necessary input files as explained in Appendix B and C. You need a CFG file
for every component you want to use in the CFG directory. You also need an outlet file
(extension outlets.trt and an EMELI provider file (extension providers.tzt). You should
start with copies from the Treynor example and edit them as needed, making sure their
comp_status has been set to Fnabled. All of these files have filenames that begin with the
cfg_prefiz, which is typically the case_prefiz associated with a particular modeling scenario.
To run TopoFlow for your own data set, open a terminal window and type:

$ python -m topoflow --cfg_prefix PREFIX --cfg_directory DIRECTORY
--driver_comp_name DRIVER

With your own data set, you may need to use smaller time steps in the CFG files to achieve
a numerically stable model run (i.e. that doesn’t crash). Also, you should use the same
time step in the CFG files for the meteorology and infiltration components. Be aware that
grid stack files can be large (i.e. those ending with .rts or 2D-*.nc) and can accumulate
over multiple model runs.



