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1. Conservation of Mass

The integral form of mass balance for surface flows can be written as

(1)
∂

∂t

∫
Ω
ρ d dA =

∫
Ω
ρR dA−

∫
∂Ω

(n̂ · ρ〈u〉d) dw.

This equation simply states that the mass in an arbitrary control volume (extending from
the bed to the free water surface) can change with time in only two ways; namely it can (1)
be added or subtracted from the top or bottom of the control volume, or (2) be convected
across the (vertical) boundary of the control volume. In equation (1), 〈u〉 denotes vertically-
averaged downstream velocity, and d is the flow depth. The function R(x, y) is known as
runoff, effective rainrate or excess rainrate and gives the net volume of water per unit area
per unit time that is added or subtracted vertically at the point (x, y). This forcing can be
decomposed into five parts — rainfall, P , snowmelt, S, baseflow seepage from subsurface,
B, evaporation, E, and infiltration, I — so that R = (P + S + B) − (E + I). In general,
it is clear that the variation of R in space and time may be quite complicated for a real
land surface. We will be treating R as a function of space and time that is given to us as a
sequence of 2D arrays, and will be trying to predict the basin response to this “forcing.”

If we apply a discretized version of equation (1) to pixel i in a DEM, then for a grid cell
with dimensions ∆x and ∆y, the time derivative of the volume of water within the cell is
given by

(2)
∂V

∂t
= Ri (∆x∆y)−Qi +

∑
k∈N

Qk.

where V is the volume of water, R(i, t) is the excess rainrate or runoff in cell i at time
t, Q(i, t) is the volume flow rate of water leaving the grid cell, and the sum is the total
volume flow rate of water entering the grid cell from its D8 neighbor cells. If this volume
of water were distributed uniformly over the grid cell, we would have

(3) V = dc ∆x∆y,

where dc would be the uniform water depth over a grid cell. However, if all of the water
is contained within a prismatic channel of length ds that has a trapezoidal cross-section,

1



2 SCOTT D. PECKHAM FEBRUARY 23, 2017

then water volume can be expressed as

(4) V = Aw ds =
[
dwb + d2 tan(θ)

]
∆s,

where wb is the bottom width of the trapezoid, Aw is the wetted cross-sectional area of the
channel, d is the depth of water in the channel, ∆s is the channel segment length (in the
grid cell) and θ is the flare angle of the bank (relative to the vertical). Note that once we
have updated V with (2), we can solve the quadratic (4) to get the new flow depth, d, as

(5) d =
−wb +

√
w2
b + 4 tan(θ)V/∆s

2 tan(θ)
.

Computing the time derivative of (4) and simplifying, we also find that

(6)
∂V

∂t
=

(
∂d

∂t

)
[wb + 2 d tan(θ)] ds =

(
∂d

∂t

)
wtop ds =

(
∂d

∂t

)
Atop.

Here, wtop is the top width of the wetted cross-section and Atop is the top area of the
prismatic channel. Equating (2) and (6) for ∂V/∂t, we obtain

(7)
∂d

∂t
≈ ∆d

∆t
=

(
R∆x∆y −Qi +

∑
kQk

Atop

)
.

TopoFlow solves (2) for V (i, t) with simple, explicit time-stepping, and then computes
channel flow depth for every grid cell using (5).

2. Conservation of Momentum

Equations for the conservation of vertically-integrated horizontal momentum can be
obtained in a similar way. For surface flows, momentum balance simply states that the total
(horizontal) momentum of the fluid within an arbitrary control volume (extending from the
bed to the water surface) can change with time in three different ways, namely the water
can (1) be accelerated down the free-surface gradient by gravity, (2) be decelerated through
frictional processes, or (3) be convected across the boundary of the control volume. The
loss of momentum through friction is a complex process — the no-slip boundary condition
applied to the roughness elements on the bed results in a velocity gradient normal to
the bed which acts to diffuse momentum from the interior of the flow to the bed. Once
there, it is either transferred to the mobile bed elements, or dissipated as heat. For a
vertically-integrated hydrostatic flow, momentum balance can be written

(8)
∂

∂t

∫
Ω
ρ〈u〉 d dA =

∫
Ω
− ρgd∇h dA+

∫
Ω
τb (1 +∇b · ∇b)1/2 dA−

∫
∂Ω
d 〈u〉 (n̂ · ρ〈u〉) dw,

where 〈u〉 = (u, v) is the vertically-integrated horizontal velocity, d is the depth, b is the
height of the bed above an arbitrary datum, and h = (b+d) is the free-surface height. The
quantity τb appearing in the third term is the horizontal component of the (total) shear
stress at the bed, which we are taking to include all of the momentum loss mechanisms in
the problem, including skin friction due to grain roughness, and form (or pressure) drag

due to bedforms, bars, and any other topographic elements. The factor (1 +∇b ·∇b)1/2 dA
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that appears in the momentum-loss term is just the differential surface area of the bed, b,
which can be appreciably greater than dA near the banks of the channel.

Assuming incompressible flow, we can divide through by the water density, ρ. With the
channel segment in grid cell i of the DEM as the control volume, Ω, equation (8) then
becomes

(9)
∂

∂t
(uiVi) = g Si Vi − fi u2

i Pw ∆s− uiQi +
∑
k∈N

ukQk.

Here, Si is the free-surface slope between pixel i and its D8 parent pixel (downstream), Pw

is the wetted perimeter of the trapezoidal cross-section, given by

(10) Pw = wb +
2 d

cos(θ)
,

and fi is half the Fanning friction factor, which for Manning flow resistance is given by

(11) fi =
τi
ρ u2

i

=
g n2

R
1/3
h

≈ g n2

d1/3
.

(Note: When we use Manning’s formula and the depth-slope product formula for total
shear stress — both of which strictly only hold for uniform, nonaccelerating flow — we
can’t really decouple the gravity and friction terms as we can when using the Logarithmic
Law of the Wall. So there is some circularity here, but this seems to be standard practice.)
Note that the last two terms in (9) represent the flux of momentum leaving a DEM grid
cell and the flux of momentum that enters the grid cell from its D8 neighbors. Letting
Mi = ui Vi, (total channel momentum divided by ρ), we have

(12) ∆Mi = ∆t

[
g Si Vi − fi u2

i Pw ∆s− uiQi +
∑
k∈N

ukQk

]
.

In TopoFlow, for the dynamic wave method, Mi is updated with (9) after each time step,
and then the flow velocity is updated as: ui = Mi/Vi. Note, however, that with this simple,
explicit time-stepping method, ∆t may need to be very small to achieve numerical stability.
Instability results in the friction term becoming much larger than the gravity term, which
leads to large, negative momentum in some grid cells. (TopoFlow currently disallows this
by setting the momentum to zero in those cells.) The problem is made worse by running
TopoFlow with an initial flow depth of zero in all grid cells. This is the default, which
is not a problem for the kinematic wave and diffusive wave methods of flow routing. In
view of these facts, the dynamic wave method should be used with caution. Performing a
series of model runs with successively smaller time steps and comparing peak values can
help to determine whether true numerical stability has been achieved. For stable runs, the
frictional loss term typically increases smoothly to approach the value of the gravitational
acceleration term from below, and the momentum influx and outflux are also approximately
equal. A reversal of flow direction is currently not allowed and would require dividing the
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backflow between multiple contributing D8 neighbors.

In the TopoFlow source code, we first update runoff, R, then discharge, Q, then flow
volume, V , then flow depth, d, then hydraulic radius, Rh, then free surface slope, S, then
friction factor, f , then M = uV and finally, the mean flow velocity, u.


