10

Reproducible, Component-based Modeling with
TopoFlow, A Spatial Hydrologic Modeling Toolkit

S. D. Peckham !*, M. Stoica ' T, E. Jafarov 2%, A. Endalamaw 3% W. R. Bolton >

nstitute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309
2Los Alamos National Lab, Los Alamos, NM, 87545

3International Arctic Research Center, University of Alaska, Fairbanks, AK 99775

Key Points:

= This paper provides a simple example of a reproducible hydrologic modeling study.
< All of the data, models and processing scripts used in this study are shared online.

- Customized data preparation scripts are typically required due to data heterogeneity.

*orcid.org/0000-0002-1373-2396
T orcid.org/0000-0002-6612-3439
*orcid.org/0000-0002-8310-3261
8 orcid.org/0000-0001-9585-8517

Corresponding author: Scott D. Peckham, Scott.Peckham@colorado.edu

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Abstract

Modern geoscientists have online access to an abundance of different data sets and
models, but these resources differ from each other in myriad ways and this heterogene-
ity works against interoperability as well as reproducibility. The purpose of this paper is
to illustrate the main issues and some best practices for addressing the challenge of re-
producible science in the context of a relatively simple hydrologic modeling study for a
small Arctic watershed near Fairbanks, Alaska. This study requires several different types
of input data in addition to several, coupled model components. All data sets, model com-
ponents and processing scripts (e.g. for preparation of data and figures, and for analysis of
model output) are fully documented and made available online at persistent URLs. Sim-
ilarly, all source code for the models and scripts is open-source, version controlled and
made available online via GitHub. Each model component has a Basic Model Interface
(BMI) to simplify coupling and its own HTML help page that includes a list of all equa-
tions and variables used. The set of all model components (TopoFlow) has also been made
available as a Python package for easy installation. Three different graphical user inter-
faces for setting up TopoFlow runs are described, including one that allows model compo-

nents to run and be coupled as web services.

1 Introduction

Observational data and predictive models (or experimentation and theory) are the
two pillars of science, although both are significantly impacted by computation [Vardi,
2010]. Physically-based, mathematical models summarize our current best knowledge of
how physical systems operate and they are used to build computational models that pre-
dict future states from initial conditions. Data sets and computational models therefore
represent two fundamental resource types that geoscientists use to work on problems of
societal interest, such as watershed management and the effects of climate change. While
modern geoscientists have online access to an abundance of different data sets and mod-
els, these resources differ from each other in myriad ways and this heterogeneity works
against interoperability. Interoperability is typically necessary, however, because a sin-
gle data set or model is seldom sufficient to tackle a nontrivial geoscience problem. For
example, models typically require several different types of input data which they may
obtain from reading input files or from other models. It is therefore often necessary to

couple together many different heterogeneous resources into a computational workflow,

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

7

and geoscientists spend a large fraction of their time just setting up and executing these
workflows. An extensive, empirical analysis of scientific workflows [Garijo et al., 2013]
(and references therein) suggests that geoscientists typically spend between 60% and 80%
of their time on dealing with such issues, leaving the remainder as the time available for
the science. The phrase data friction [Edwards, 2010; Edwards et al., 2011] has also been

used to describe this problem.

This challenge of interoperability leads to significant complexity and is one of the
main barriers to reproducibility, that is, the ability to reproduce a scientific study or exper-
iment. Reproducibility is considered to be one of the cornerstones of science, but complex
workflows often cannot be replicated unless they are fully described and documented. In
recent years this topic has been receiving increased attention. Hutton et al. [2016] cite ex-
amples from a broad array of scientific disciplines and then focus on this issue in the con-
text of computational hydrology. Since most modern scientific workflows rely on numer-
ous digital resources such as data sets, data preparation and analysis software and compu-
tational models, it is now recognized that simply describing a workflow is not enough —
all of the digital resources used in a study should also be made available with persistent

identifiers (i.e. URLs, DOIs).

This paper begins with a description of a spatial, hydrologic model called TopoFlow
developed by the first author and colleagues over the last 16 years. This is followed by an
example application to a small, Arctic watershed in the Caribou — Poker Creek Research
Watershed (CPCRW). This application starts with a description of the study site, then
walks through all of the steps involved in obtaining the required input data sets, preparing
them for use by TopoFlow, setting up a model run, executing the model and then analyz-
ing the results. By focusing on late summer rainfall events, the dominant hydrologic pro-
cesses are rainfall and infiltration — in fact, a large percentage of the rainfall volume is
lost to infiltration and does not contribute to the volume flow rate (discharge) at the basin
outlet. A well-known, simplified, but physically-based model for the infiltration process,
known as the Green-Ampt method, is used within the model and also in our interpretation

of the results.

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

929

100

101

102

103

2 Overview of the TopoFlow Model Toolkit

TopoFlow is a spatially-distributed, process-based and open-source hydrologic model
[Peckham, 2009a]. Development of TopoFlow started in 2000 through a collaboration be-
tween Peckham (University of Colorado, Boulder) and several colleagues at WERC, the
Water and Environmental Research Center (University of Alaska, Fairbanks). Peckham
had just developed a spatially-distributed rainfall-runoff model that used the D8 method
for determining flow directions over topography given as a digital elevation model (DEM).
That model distinguished between DEM grid cells on hillslopes and those containing
channels, using overland flow for the former and open-channel flow hydraulics for the
latter [Henderson, 1966]. Each channel grid cell contained a prismatic channel with its
own trapezoidal cross-section and roughness parameters. It supported three different meth-
ods of channel flow routing, namely kinematic wave, diffusive wave and dynamic wave. It
also provided the option of using either Manning’s formula or the logarithmic law of the
wall to model flow resistance. Hinzman’s group at WERC had just published a paper on
their ARHYTHM model [Zhang et al., 2000], a spatially-distributed hydrologic model for
use with Arctic watersheds with an advanced treatment of thermal processes. ARHYTHM
used a computational grid of triangles and supported multiple treatments of snowmelt and
evaporation, based on many years of prior work in the Arctic, e.g. Hinzman et al. [1996],
Hinzman et al. [1998]. ARHYTHM supported energy-balance treatments of both snowmelt
and evaporation in cases where shortwave and longwave radiation measurements were
available. It also supported simplified treatments of these two processes that required less
input data, namely the Degree-Day method for snowmelt and the Priestley-Taylor method

for evaporation.

2.1 Single-application, IDL version of TopoFlow with GUI

This collaboration led to the merging of the two models into a single model called
TopoFlow-IDL that supported multiple methods of modeling each hydrologic process and
that also had a user-friendly graphical user interface (GUI). While ARHYTHM was writ-
ten in Fortran and used triangular grid cells, TopoFlow was written in IDL (Interactive
Data Language) and used rectangular grid cells with D8-based flow directions. The pro-
cess treatments of snowmelt, evaporation and shallow subsurface flow from ARHYTHM
were converted to IDL, and array-based best programming practices (e.g. avoidance of

spatial loops) were used to ensure good runtime performance. A wizard-style GUI for

104

105

106

107

108

109

110

1

112

113

114

115

116

17

118

119

120

121

122

128

124

125

126

127

128

129

130

131

132

133

TopoFlow-IDL was developed and from 2000 to 2007 support for many additional hydro-

logic processes were added. These additions can be summarized as follows:

Meteorology. The first major addition was a Meteorology module based on celestial me-
chanics with shortwave and longwave radiation calculators, using the approach outlined
in Dingman [2002] (Appendix E). This allowed the energy-balance snowmelt and evap-
oration process modules to be used even when shortwave and longwave radiation mea-
surements were unavailable. This module required measurements of precipitation rate, air
temperature, relative humidity and wind velocity as its primary inputs, to be read from

files, but computed many output variables from these.

Infiltration. Three different methods for modeling infiltration were added, based on the
work of Smith et al. [2002], namely the well-known Green-Ampt, Smith-Parlange three-

parameter method and the Richards equation (1D) method.

Diversions. Support for flow diversions were added (e.g. canals, tunnels) as well as sup-
port for sources and sinks that add or remove some or all of the flow that passes through
a given grid cell. Flow diversions are relatively common and must sometimes be modeled
to properly account for mass balance. (e.g. the 23.3-mile long Harold D. Roberts Tunnel
under the Continental Divide from Dillon Reservoir to the South Platte River near Denver,
Colorado). This capability has also been used to model flow in river delta distributaries

[Hannon et al., 2008].

D8 Toolkit. The D8 method [Jenson, 1985] allows flow direction (aspect) to be computed
from a DEM. Given a grid of D8 flow direction codes, several additional geometric at-
tributes can be computed including topographic slope, total contributing areas (TCA) and
channel lengths. TCA can then be used to compute grid-based estimates of channel at-
tributes including widths and roughness parameters as explained in Peckham [2009a]. This
component contains all of the code necessary to compute D8-based attributes. (See de-

tailed instructions below.)

All of the TopoFlow components are described in detail in Peckham [2009a] and
also in HTML-based help files online that are listed in Appendix A. In addition to the
hydrologic process components, TopoFlow-IDL includes a number of tools for preparing

the input data required by the process components.

134

135

136

187

138

139

140

141

142

143

144

145

146

147

148

149

151

152

153

154

155

156

157

158

159

160

161

162

163

164

TopoFlow-IDL has been used in a number of studies, such as Schramm [2005],
Bolton [2006], Coe et al. [2008], Liljedahl [2008] and Pohl et al. [2009] several of which

involved Arctic hydrology.

2.2 Component-based, Python version of TopoFlow

The NSF-funded CSDMS project began in 2007, with Peckham as its Chief Soft-

ware Architect. The CSDMS modeling framework was designed to support flexible, component-

based, “plug and play” modeling and to promote reuse and coupling of open-source mod-
els written by different authors [Peckham et al., 2013]. For component-based modeling,
one has to decide on an appropriate level of granularity, that is, the level of functionality
that components should encapsulate. In any given geoscience modeling context, there are
typically multiple physical processes that contribute to conservation of mass, momentum
and energy, and there are typically multiple methods (from very simple to sophisticated)
for modeling each process. Different methods may differ in various ways, such as (1) the
set of equations and variables used to represent the process, (2) the numerical scheme for
solving the equations, (3) the programming language, (4) the computational grid, or (5)
the use of processors (e.g. parallel vs. serial). Several examples of hydrologic processes
were described in the previous section. It is therefore natural to encapsulate individual
physical process treatments in interchangeable components, and this sets an appropriate

and useful granularity for plug-and-play modeling.

While TopoFlow-IDL already supported multiple methods for modeling each of sev-
eral hydrologic processes — with users selecting methods from process droplists — all of
these modules were dependent on the application to connect the selected modules. A user
could only choose from modules that were already included in the application and could
not easily replace some of them with modules written by others, nor use a TopoFlow pro-
cess module outside of the TopoFlow-IDL app. This type of “all in one” model is typical,
where the application basically serves as a self-contained framework that allows all of the

process modules to interoperate.

As an efficient means of exploring different architectural designs to support plug-
and-play modeling, much of the source code for TopoFlow-IDL was converted from IDL
to Python/NumPy. TopoFlow was also decomposed into a set of independent process-level

model components as shown in Figure (1). Each component then had its own time loop,

172

173

174

175

165

166

167

168

169

170

17

176

177

178

179

181

Confidential manuscript submitted to Earth and Space Science

INFILTRATION
SATZONE

Figure 1. A diagram of all TopoFlow components, where arrows between components indicate dynamic
coupling and the passing of one or more variables between components. Each component provides a method
of modeling a particular hydrologic process and the dashed boxes contain alternate methods for modeling the

same process, ranging from simple to complex. Users choose one process component from each dashed box.

its own configuration file (a text file read by the component at startup to set parameters,
etc.), its own HTML help page and so on. Any variables that needed to be passed be-
tween model components were made available through a standardized component interface
(i.e. set of functions), and many different interface prototypes were tested against numer-
ous design criteria. TopoFlow therefore became a vehicle for designing the CSDMS mod-
eling framework [Peckham et al., 2013], including the Basic Model Interface [CSDMS-
BMI, 2016] and the CSDMS Standard Names [Peckham, 2014a].

The BMI enables simplified, plug-and-play reusability and coupling of model com-
ponents written by different people, even when those models differ in terms of program-
ming language, computational grid, time-stepping scheme, and the names, units and data
types of their input and output variables. The standardized set of functions in the BMI
provide a modeling framework with (1) fine-grained control of model execution, (2) de-

scriptive information needed for coupling and (3) variable getter and setter functions to

182

183

184

185

186

187

188

189

190

191

192

194

195

197

198

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

support exchanging the values of variables. Based on information retrieved from BMI
functions, the modeling framework is able to automatically call its built-in mediators (e.g.
regridders, unit converters) to deal with differences between the coupled models. A unique
feature of BMI is that it also addresses the problem of semantic mediation that arises from
each model using its own set of names for input and output variables (its own internal
vocabulary). A BMI implementation includes a simple mapping from a model’s internal
variable names to a set of standard variable names called the CSDMS Standard Names
(CSN). This mapping allows the framework to perform automatic semantic mediation.
The CSN are a systematic, unambiguous, cross-domain set of variable naming conventions
which have evolved into a formal ontology called the Geoscience Standard Names [GSN,

2017].

Prior to 2012, CSDMS had developed a web-based graphical tool called the Com-
ponent Modeling Tool (CMT) that CSDMS members could download as a lightweight
Java application. CMT allowed users to select components from a palette and drag them
into an arena to become part of a composite model. Once in the arena, CMT provided
a tabbed-dialog GUI for each model component to collect the user settings necessary to
automatically create a configuration file from a model-specific template. The GUI also
provided standardized, HTML help pages for each component. Users could create new
models from components, configure them, then run them on a high-performance cluster
and also monitor their progress through the CMT. CMT has since been superseded by
the CSDMS Web Modeling Tool (WMT), which is completely browser-based as well as
more robust and efficient. TopoFlow was available in the CMT and is now available in the
WMT, [CSDMS-WMT, 2016] by choosing wmt-hydrology. The WMT allows models to
be composed and configured without logging into the high-performance cluster until they
are ready for execution. Note that both CMT and WMT are simply graphical front ends
to the CSDMS modeling framework, which itself is a software stack running on a cluster.
They collect and store information in a framework configuration file that is passed to the
underlying framework. However, these configuration files may also be created with a text

editor.

As a result of deconstructing TopoFlow into separate process-level model compo-
nents, the Python version of TopoFlow required the presence of a model coupling frame-
work like CSDMS in order to be used. However, some TopoFlow users wanted to be able

to run TopoFlow on their own computers, without relying on a cluster with the full CS-

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

DMS software stack. This led to the development of a lightweight, experimental modeling
framework written entirely in Python called EMELI (Experimental Modeling Environment
for Linking and Interoperability) [Peckham, 2014b]. Users list which model components
they want to use in a provider file and then EMELI 1.0 automatically connects each com-
ponent to other components in the set that are able to provide the input variables they re-
quire, based on semantic matching with CSDMS Standard Names. EMELI requires each
model component to have an implementation of BMI with Python bindings. EMELI also
includes two mediators, a time interpolator and a unit converter, that are automatically in-

voked when model components use different time steps or units.

All of the TopoFlow model components, utilities and a few example data sets are
now available in a single, stand-alone Python package, bundled with EMELI [Peckham,
2016]. Source code for EMELI is in the framework folder of this package. Source code
for TopoFlow model components is in the components folder, and each has a BMI inter-
face and uses CSDMS Standard Names. This includes a component called d8_global.py
with a complete D8 toolkit for computing D8 flow direction grids and associated grids
(e.g. total contributing area grids). Also included is a D8-based, fluvial landscape evo-
lution model called Erode (erode_d8_global.py). Source code for a variety of shared,
low-level TopoFlow utilities is in the utils folder, and these are used by all components.
Several complete sets of input files for testing are included in the examples folder of the
Python package. Altogether, the TopoFlow package (version 3.5) consists of over 71,000

lines of Python code, including comments.

As part of an NSF EarthCube building block project called GeoSemantics, an alter-
nate version of EMELI, EMELI-Web [2016], has been developed that can couple TopoFlow
model components running on different servers as web services [Jiang et al., 2017]. Val-
ues of variables that must be passed between components running on different servers are
bundled in NetCDF files for transmission. It also provides a browser-based GUI, similar

to WMT, for configuring each model component prior to a model run.

TopoFlow continues to be used in different contexts and in support of different cyber-
infrastructure projects. For example, TopoFlow is used by CSDMS staff for teaching. In-
dividual TopoFlow components can also be run within an iPython notebook, which makes
it possible to follow every detail of model execution. TopoFlow is also being used in the

NSF EarthCube building block project OntoSoft to help drive the development of stan-

247

248

249

250

251

252

253

254

255

256

257

258

259

261

262

264

265

266

267

268

269

270

271

273

274

275

276

277

dardized metadata and ontologies for describing geoscience models [OntoSoft-CSDMS,

2016].

2.3 The Typical TopoFlow Workflow

With physically-based, spatially-distributed hydrologic models like TopoFlow, most
of the work in using them has to do with acquiring and preparing the input data for the
study site, configuring the model and then running the model a large number of times
with different parameter settings. (Without using a standard component interface like BMI,
coupling process models can also be very time-consuming.) Digital elevation data, which
plays a very important role in this type of modeling, is generally easy to find and down-
load for any region of interest, at a variety of resolutions, thanks to the efforts of the U.S.
Geological Survey and other agencies and projects. Many of the other types of input data,
including meteorological, soil and snowpack data, may not exist for a basin of interest,
may have only been measured at a station some distance away, or may be difficult to find
with an online search. However, this information is generally available online for experi-
mental watersheds such as LTER (Long Term Ecological Research) sites. Data at the scale
of individual river channels, such as their widths, depths and bed roughness, is generally
not available and must be parameterized with known empirical relationships. Figure (2)
provides a high-level illustration of the steps in a typical workflow. Details on how to per-
form Steps 2 through 4 are included in multiple appendices. Note that Steps 6 through 8
may be repeated many times with different choices of process components and different
parameter settings in an effort to understand the physical processes at work in the basin
and to make predictions that compare favorably with observations. For hydrologic mod-
eling, one typically compares the predicted and observed hydrographs at the outlet of the
basin of interest, which show the volume of water per unit time as a function of time (i.e.

Q(t)) that flows through the outlet.

2.4 Preparing Input Files for TopoFlow

One of the unique features of TopoFlow is that, by design, almost any input variable

that occurs in any of the process components can be provided as any of the following:

(1) a scalar (a single value that does not vary in space or time),

(2) a time series (a value that varies in time, but not in space),

—10-

272

1. Download and preprocess DEM for study site.
(Download tiles, mosaic, subset, subsample.)

e

il

DEM

5. Download and preprocess meteorological data.
(e.g. rainfall rate, air temperature, rel. humidity).

¢ e

relative
humidity

rainfall air
rate temp.

2. Extract channel network and derived grids from DEM.

(e.g. D8 flow direction codes, total contributing area
(TCA) and topographic slope (hillslopes & channels).

|:'> D8 TCA Slope
codes grid grid

6. Choose process components and obtain all input
data they require. (e.g. soil data for an infiltration
process component)

infiltration evaporation snowmelt chan. flow

) x| x| &

3. Determine DEM column and row for basin outlets
of |nterest and their propertles (e.g. TCA).

bed width

7. Prepare a configuration file for each component.
Choose outputs, specify files & set options.

|nﬁﬁ evaﬁ snouﬁ charlj
CFG | CFG | CFG |

4. Parameterize unmeasured properties of every
channel in the river network using the TCA grid.

flare
angle

TCA |:“> Manning bed

grid n width

CFG |
8. Run composite model. Visualize & analyze results.
Compare model predictions to observations.

Figure 2. Typical steps in a TopoFlow modeling workflow.

—11-

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

(3) a grid (values that vary over space, but do not change over time) or

(4) a grid stack (values that are variable in both space and time).

For example, a spatially uniform, steady rainfall rate would be provided as a scalar (to

be used for all grid cells and all times), while a space-time rainfall field would be pro-
vided as a grid stack. A grid stack is essentially a time series of grids. Implementation of
this feature is simplified because both IDL and Python are dynamically typed program-
ming languages, and upcasting therefore occurs automatically in expressions that contain a
mixture of scalar values and grids. So functions in TopoFlow usually don’t need to check
whether arguments are scalar values or grids and can handle mixtures. (Note: The term
scalar is used in TopoFlow to mean a single numerical value; this could be confusing be-

cause a grid of values can be called a scalar field.)

For consistency, simplicity and runtime performance, when TopoFlow reads the val-

ues of input variables from files, it expects (and requires) that:

(1) any time series is stored in a single-column text file (one value per line),
(2) any grid is stored in a IEEE binary grid file, in row-major order

(3) any grid stack is stored as a succession of binary grids, stored in a single file.

Binary grid files are a very common and computationally efficient file format. Appendix B
describes binary grid files in more detail and explains how to read and write them with
Python. Appendix C describes the binary grids that are needed to run TopoFlow. Ap-
pendix D explains how to prepare D8-based, binary grid input files for TopoFlow from a
DEM with the D8 Global component. (The DEM is also assumed to be stored in a binary
grid file.)

While all of the hydrologic process components in TopoFlow are optional and can
be disabled with a setting in their configuration file, there are very few simulations that
can be performed without using a channel flow component such as the Kinematic Wave
component. (One example is snow depth accumulation using a snow component and me-
teorology component.) However, channel flow components require input files that describe
both the channel geometry and bed roughness as spatial grids with the same dimensions
as the DEM, as well as a D8 channel slope grid. This type of data is not readily available
online, so TopoFlow users must prepare these grids. As explained in Peckham [2009a],

these can be estimated by applying power-law functions of the form V = ¢ (A + b)? to

—12—-

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

a DS total contributing area (TCA) grid, because both channel width and bed roughness
vary with discharge (and therefore with TCA). However, the power-law function parame-
ters should be chosen carefully to obtain reasonable results. The IDL version of TopoFlow
(TopoFlow-IDL) has a Create menu in its GUI that includes dialogs for computing these
grids. However, one could also use Python commands similar to those in Appendix C and
D to read a TCA grid into a variable, A, apply a power-law function, and then write the
resulting grid to a binary grid file. The compound filename extensions _chan-w.rtg, _chan-
a.rtg and _chan-n.rtg are commonly used in TopoFlow for grids of channel widths, chan-
nel trapezoidal bank angles (i.e. flare angles) and the channel roughness parameter, Man-

ning’s n, respectively.

Many of the other TopoFlow input variables represent either initial conditions — such
as depth of water or snow, soil water content and position of the water table — or forc-
ing variables (or drivers), such as precipitation rate, air temperature, relative humidity,
shortwave and longwave radiation fluxes and wind speed [Peckham, 2009a]. These can be
acquired from a variety of sources, including federal agencies, but must be either down-
loaded as or converted to binary grid files (or single-column text files for time series data).
They may also need to be clipped or resampled to have the same dimensions and spatial

extent as the DEM, which can be done using GIS software.

For output files, TopoFlow users can choose to save a time series, profile series,
grid stack, or cube stack of data values to a NetCDF file, or to binary grid files. A “cube
stack” is a succession of 3D arrays indexed by time, while a “profile series” is a succes-
sion of 1D arrays indexed by time, such as a soil-moisture profile that varies over time.
These four types of output files include 0D, ID, 2D or 3D in their filenames, respectively.
The 1D and 3D options are currently only used for subsurface flow variables. Users set
flags in TopoFlow configuration files to choose which computed variables to save, using
one of these four types of files. Often, one is interested in saving the values of some out-
put variable (e.g. discharge, flow depth or flow speed) at one or more specific locations
(e.g. basin outlets) as a time series. This option can be turned on with a setting in a com-
ponent’s configuration file, but requires the user to first create an outlet file — a simple text

file with the following format:

Monitored Grid Cell (Outlet) Information

—13-

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

124 101 4.83503 385.0

The Column and Row values are essential and must be obtained with GIS software, such
as RiverTools, but the Area and Relief values are nonessential. Multiple grid cells can be

indicated for monitoring by adding rows.

Many applications provide a graphical user interface (GUI) that can make it much
easier to prepare, process, edit, analyze and visualize binary grid input files. For example,
Appendix E explains how RiverTools and TopoFlow-IDL can be used. Additional infor-
mation on preparing input files for TopoFlow can be found in Peckham [2009a], and in

the TopoFlow Online Tutorial.

3 Example Application — Caribou Poker Creek Research Watershed
3.1 Description of the Watershed

To illustrate the workflow of the models setup and run we use the data from the
Caribou Poker Creek Research Watershed (CPCRW) located 48 km north of Fairbanks
N 65° 10" 147° 30" Alaska. The CPCRW site is part of the LTER (Long Term Ecological
Research) network. Parts of this watershed are underlain by permafrost, where the max-
imum seasonal thaw depth thickness is about 0.52 [m] at a low elevation point near the
confluence of Poker and Caribou Creeks [Bolton et al., 2000, 2004; Bolton, 2006]. Black
spruce is generally found along poorly drained north-facing slopes and valley bottoms.
Aspen, birch, alder and sporadic white spruce are found on the well-drained, south-facing
slopes. Tussock tundra, feather moss, and sphagnum mosses are also found along valley
bottoms [Bolton, 2006]. The watershed encompasses an area of 101.5 [km?] as shown in
Figure (3). CPCRW is located within the boreal forest area. The watershed has six sub-
watersheds, where three of them (C2, C3, and C4) have been continuously monitored over
the last few decades. We chose to model the C2 sub-watershed within the CPCRW be-
cause it is south-facing and has almost no permafrost. South-facing slopes usually cor-
respond to a warmer micro-climate, have a thinner organic layer and well-drained soils.
The snowmelt at this site usually happens in a span of one or two weeks at the end of the

spring season. Previous studies (e.g. Bolton et al. [2004]) have compared results for the

14—

https://csdms.colorado.edu/wiki/Model_help:TopoFlow

374

375

372

373

385

386

387

388

389

390

391

392

393

394

395

Micro-Measurment Transect Sites
Stream Gaging Site

Meteorologic Tower

Snow Gaging Site

cooeeo0

; C2 sub-basin, 5.2 km*
o B ~2% Permafrost

C3 sub-basin, 5.7 km*

~53% Permafrost

Caribou Creek basin,

41.7 ki N
~31% Permafrost /

Figure 3. A map of the present measurement sensors in Caribou Poker Creek Research Watershed study

site.

C2 basin to those of the north-facing, C3 basin, which has about the same basin area but

has 54% permafrost vs. 4% for C2. See Figure (4).

Figure (5) is a soil map for the vicinity of the C2 basin, clipped from a larger soil
map contained in Rieger et al. [1972] (p. 14). It shows that the soil in the C2 basin is
mostly Gilmore silt loam, with Fairplay silt loam near the drainage divide. Table 2 in
Rieger et al. [1972] (p. 13) provides estimates of K (which they call permeability, as ex-
plained on p. 12), with values between 0.6 and 2.0 [in/hr], or 4.23 X 107% to 1.41 x 107>
[m/s].

3.2 Acquiring a Digital Elevation Model for the Study Site

The TopoFlow model relies on a digital elevation model (DEM) in order to deter-
mine the flow directions and slopes that it uses to route water across the landscape. We
used the following steps to obtain a DEM for our study site. While we think it is illustra-

tive to describe these steps, we note that they are specific to a browser-based, graphical

—15-

376

377

147.66°W 147.60°W 147.54°W 147.48°W 147.42°W 147.36°W

65.1°N 65.22°N 65.25°N

6516°N

+ CRREL
CARSNOW

651N

65.1C°N

Figure 4. Locations of the C2 and C2 subbasins and the four met stations within the Caribou — Poker Creek

Research Watershed. North is at the top of the image and the circles have a diameter of about 3 [km].

—16—

378

379

380

381

382

383

384

Confidential manuscript submitted to Earth and Space Science

Figure 5. Soil map for part of the Caribou — Poker Creek Research Watershed that includes the C2 basin,
from Rieger et al. [1972]. Soil types are all specific types of silt loam and corresponding slope ranges, as
indicated with the following symbols: Bradway: Br; Ester: EsD (12 to 20%), EsE (20 to 30%), EsF (30 to
40%), Fairplay: FpB (3 to 7%), FpC (7 to 12%), FpD (12 to 20%), FpE (20 to 30%); Gilmore: GmD (12 to
20%), GmE (20 to 30%), GmF (30 to 45%); Karshner: KaB (3 to 7%), KaC (7 to 12%), Olnes: OnB (3 to
7%), OnC (7 to 12%), OnD (12 to 20%), OnE (20 to 30%), OnF (30 to 45%); Saulich: SuB (3 to 7%), SuC

(7 to 12%), SuD (12 to 20%).

—17—

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

user interface (GUI) provided by the U.S. Geological Survey (USGS) as it exists at the
time of writing — one that is likely to change in the future. While GUIs like this are typ-
ical and fairly easy to use, a hydrologist may need to use many different ones in order to
acquire all of the input needed for a modeling study. This illustrates another challenge for
reproducibility that is partially alleviated when data providers make their data available for

download via a web service with a standardized API.

Step 1. The USGS provides an online tool called The National Map (TNM) for down-
loading data. In the navigation section on the left side of the page, check the box labeled
Elevation Products (3DEP) in the Data section. This displays additional check boxes with
different horizontal resolutions. We used 1 arc-second DEMs for this study, so we checked
the box with this label. In the section labeled File Format, we checked the radio button la-
beled GridFloat. This is a simple, nonproprietary and efficient format that stores elevation
values in row-major order (IEEE 4-byte, floating-point binary values), with the filename
extension“.flt”. Metadata — such as number of rows and columns, bounding box and grid

cell dimensions — is saved in a small, companion text file with filename extension “.hdr”.

Step 2. Using the TNM browser-based map, we zoomed into the region labeled Yukon
Flats National Wildlife Refuge, in the area southwest of (and downstream from) the conflu-
ence of the Porcupine River and the Yukon River. This is about 38 km north and slightly
east of Fairbanks. The Caribou Poker Creek Research Watershed is contained within the

1 degree by 1 degree tile with its southwest corner at 66 degrees North latitude and 148
degrees West longitude. We used the plus button to zoom into this region and clicked the
radio button at the top labeled Current Extent. We then clicked on the blue button labeled
Find Products. This resulted in a list of 1-degree DEM tiles, and we then selected the one
labeled USGS NED 1 arc-second n66wli48 I x I degree GridFloat 2016 by clicking on the
shopping cart plus button to the right. The size of this file (one tile) is 42.99 MB. (A
higher-resolution DEM for the same tile, with a grid spacing of 1/3 arc-second and file-
size of 377.98 MB is also available.) Note that 1 arc-second of latitude is always roughly
93.6 meters, while 1 arc-second of longitude decreases with latitude as 93.6 cos(/at) and

is significantly less than 93.6 meters for these Arctic latitudes.

—18-

http://viewer.nationalmap.gov/basic/

425

426

427

428

429

430

431

432

434

435

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

3.3 Acquiring Data from the Bonanza Creek LTER Station

The Institute of Arctic Biology at the University of Alaska, Fairbanks maintains a
Long-Term Ecological Research (LTER) site (funded by NSF) called the Bonanza Creek
LTER. The Caribou-Poker Creeks Research Watershed (CPCRW) is one of the study sites
for this LTER project where long-term monitoring data is collected and made available
online. Clicking on Access Data > Study Sites Catalog in the Data menu of this website
brings up a search filter page for the Study Sites Catalog. Typing Caribou in the text box
labeled Name, Description, History and clicking on the Submit button generates a listing
of available data and a locator map. For this paper, we selected the C2 subbasin within
the Caribou Creek watershed. Data for 4 separate subbasins of Caribou Creek is/are avail-
able, namely C1, C2, C3 and C4. Note that each subbasin name begins with the letter "C”
for Caribou. There are four weather stations (or "met stations”) in the vicinity of Cari-
bou Creek, designated as CARSNOW, CPEAK, CRREL and HR1A. The longitudes and

latitudes of these stations are given by

CPEAK -147.4990579, 65.19275149
CRREL -147.4903787, 65.15425986
CARSNOW -147.5606703, 65.15065772

HR1A -147.5435743, 65.17091866

Rainfall rates, measured with a tipping bucket, are stored in text files where the header

and first line of data for the CARSNOW station look like this:

site_id,date,hour,measurement,value,unit, flag

CARSNOW, 2006-10-04, 1400, Tipping Rain Bucket,®.000,mm,G

Similarly, discharge measurements for the C2, C3 and C4 subbasins are available in text

files where the header and first line of data look like this:

"Watershed","Date-Time","Flow","Units","Flag"

"c2",7/14/1978 7:00:00,29.19,"L/s","G"

Volume flow rates (discharges) at the C2 basin outlet have been measured every summer
since 1979. The measurement frequency was hourly until summer 2001, after which it

was measured every 15 minutes. This long record presents an opportunity for investigating

—19-

http://www.lter.uaf.edu
http://www.lter.uaf.edu
http://www.lter.uaf.edu
http://www.lter.uaf.edu/research/study-sites-cpcrw
http://www.lter.uaf.edu/data/sites-catalog

454

455

456

457

458

459

460

461

462

463

464

465

467

468

469

470

471

472

473

474

475

476

477

478

479

480

the possible effects of climate change. Additional metadata is available in a file called

README.rtf.doc that comes with the data from the LTER website.

3.4 Preparing LTER Data for Model Use

Discharge and precipitation data was cleaned with the preprocessing scripts that

we have made available on GitHub. The time-date format for both sets of data was con-
verted to seconds with respect to a common reference date so that data could be properly
aligned. Discharge data for the three basins (C2, C3, C4) was interleaved, so we selected
the desired data using the data frame manipulation utilities in the Pandas Python package.
A sample of the data was selected based on the desired date-time interval values. Both
data sets contained outliers that were mislabeled with a ‘G’ (to indicate that the data is
good), so these were detected using histograms and then filtered out. Details and analysis

of the data sets can be found at the GitHub link presented above.

3.5 Observed Response of the C2 Basin to a Late Summer Rainfall Event

Figure (6) shows rainfall rates that were measured with a tipping bucket at one-hour
time intervals at the CPEAK met station for a rainfall event that took place over a two-
day period from July 28-30, 2008. Figure (7) shows the corresponding volume flow rates
(discharges) measured at the outlet of the C2 basin. The C2 hydrograph shows that there
is a baseflow discharge of approximately 0.036 [m?/s] prior to the rainfall event. (In our
model runs we start with dry channels and then add this amount of baseflow to the result-
ing hydrograph.) The four main rainfall peak values in the measured rainfall time series
for the July rainfall event at the CPEAK met station and the three corresponding peak dis-
charges at the C2 basin outlet are given in Table (1). As shown in Figure (8), observed
rainfall rates at the other met stations display a similar temporal intensity pattern, which
supports treating rainfall as spatially uniform over the C2 basin as a first approximation.
However, methods such as inverse distance weighting (IDW) could be used to create a grid
sequence of rainfall rates to be used as input to TopoFlow. An IDW tool for this purpose

is included with TopoFlow-IDL.

-20-

https://github.com/mariutzica/Paper-of-the-Future-Content/tree/master/Data-preprocessing-files

481

486

487

488

489

490

491

492

493

494

496

rainfall rate (mm/hr)

time (hours after start date 2008/07/28 16:00)

Figure 6. Measured rainfall rates at the CPEAK met station for a summer rainfall event: July 28-30, 2008.

Time [min] Rainfall Rates [mm/h] ([m/s]) || Time [min] C2 Discharges [L/s]

120 - 240 P; =351 (9.75x 1077) 255 - 285 Q=454
600 — 660 Py, = 3.24 (9.00 x 1077) — —

780 — 840 Py, = 4.59 (1.28 x 107°) 915 - 930 Q2 =736
1920 — 1980 | P; =3.24 (9.00 x 1077) 2130 — 2145 | Q3 =679

Table 1. Observed peak rainfall rates at CPEAK and corresponding peak discharges at the

C2 basin outlet.

3.6 Model Component Selection and Setup

While TopoFlow includes numerous hydrologic process components, we deliberately
chose to model a relatively simple situation where the dominant processes are surface
flow, rainfall and infiltration. We chose a late summer rainfall event so that contributions
from snowmelt could be neglected. We also chose the C2 subbasin, which is south-facing
and almost free of permafrost. The near absence of permafrost, the relatively uniform soil
type (Gilmore silt loam) and the selection of a rainfall event preceded by several days of

no rainfall mean that the assumptions of the Green-Ampt infiltration model should be ap-

21—

482

483

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

0.075

0.050

discharge rate (m? /s)

0.0asl_i ; ; ; ; ; ;

time (hours after start date time 2008/07/28 16:00:00)

Figure 7. Volume flow rates measured at the outlet of the C2 basin for a summer rainfall event: July 28-30,

2008.

proximately satisfied. In addition, evaporation is considered to be negligible compared

to the rainfall and infiltration rates. Finally, the relatively steep slopes throughout the C2
basin mean that the kinematic wave method of channel flow routing should be appropriate
(i.e. no backwater effects, etc.) With these simplifications, we can focus on surface flow,
as described by Manning’s formula, and the infiltration process physics included in the

Green-Ampt model.

3.7 Choosing a Soil Water Retention Model for the Infiltration Process

In infiltration theory, there are four inter-related variables of interest that represent
3D scalar fields below the land surface, namely K, the hydraulic conductivity, v, the ver-
tical component of the Darcy velocity, 8, the soil water content and y the pressure head. In
order to create a mathematical model that can solve for these four variables, four equa-
tions are needed. Two equations are conservation of mass and Darcy’s Law, and com-
bining them results in the well-known Richards equation for modeling the flow of water
through a porous medium (e.g. soil), driven by gravity as well as capillary suction. How-

ever, two additional equations are needed, and these are empirical relations of the form

22—

484

485

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

T T T T T

— CPEAK |
— CARSNOW ||
— HR1A

rainfall rate (mm/hr)

—-24 0 24 48
time (hours after start date 2008/07/28 16:00)

Figure 8. Measured rainfall rates at the CPEAK, CARSNOW and HR1A met stations for a summer rainfall

event: July 28-30, 2008.

K(0) and ¥(0) known as soil characteristic relations, that allow K and ¢ to be computed
as functions of 8. Brooks and Corey [1964] proposed functional forms for K(6) and ¢ (6)
that depend on three parameters, namely g < 0, the bubbling pressure, and two model
parameters 7 and A, where n = 2 + 3 1. The parameters > 0 and 4 > 0 can be set to dif-
ferent values in order to provide good fits to observational data for the flow dynamics of
different soil texture types. However, while their model has K = K at saturation (6 = 6y),
it yields ¢ = ¢ p < O instead of ¢ = 0 at saturation. van Genuchten (1980) proposed an
alternate pair of relations that also depend on three parameters, namely @, < 0, m > 0
and n > 0. While this model has ¢y = 0 at saturation, its parameters are less physically
meaningful and it has a complicated functional form for K@) [Smith et al., 2002] (p. 21)

that is difficult to integrate. (This makes it difficult to compute the parameter G in (8).)

Smith [1990] introduced a third pair of relations based on the Brooks-Corey model,
which he called the transitional Brooks-Corey (TBC) model, that combines the benefits of
the Brooks-Corey and van Genuchten models. This is the soil water retention model that is
used by every infiltration component in TopoFlow. It introduces two new parameters ¢ > 0

and ¥ 4, such that the Brooks-Corey model is obtained in the limit as ¢ — co. For Smith’s

23—

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

TBC model, the soil characteristic relations are given by

K(©.) = K, 0" (0

L
c

v©) =y |0~ 1| -ua)

At saturation, it has K = K and ¢ = — 4, and one typically sets /4 = 0. The parameters
n, A and ¢ are not independent, and in factn = 2+ 32 and ¢ = n/d = 2/4 + 3 in this
model. Since 4 > 0, this implies that > 2 and ¢ > 3. Here, ©, is the normalized soil

water content, defined as:
6-0,
0, = 3
(=] &)

and 0, is the residual water content. Note that ®,.(6,) = 0 and ®.(f5) = 1. For the TBC

soil model, it is also possible to solve for K () as

K@) =Ky {1+ [+wa) pg]}))

3.8 Green-Ampt Infiltration Model Component — Theory

The Green-Ampt infiltration model [Green and Ampt, 1911; Smith et al., 2002] can
be derived as a physically-based approximation to Richards Equation, which in turn is
considered the best-available mathematical model for the process of infiltration. This ap-
proximation conserves the mass of water and incorporates a soil model (e.g. Brooks-
Corey) but assumes that the initial soil moisture profile is uniform with depth and that
lateral flow in the unsaturated zone can be neglected. It also assumes that there is a single,
deep soil layer with uniform properties. Unlike the Richards equation model, the Green-
Ampt model treats the variation of soil water content, 6, with depth below the land sur-
face, z, as simple piston flow with a sharp wetting front — that is, with 6§ = 85 above the

wetting front and 6 = 6; below the wetting front.

Both the Green-Ampt and Smith-Parlange (three parameter) models of infiltration
make use of what Smith et al. [2002] calls the Infiltrability-Depth Approximation or IDA.
Instead of expressing the infiltration rate at the surface, vg, as a function of time, ¢, the

IDA instead expresses vo as a function of the cumulative infiltration depth, F, given by

t
F(t) = f vo(r) dr. ©)
0

Note that vo = dF/dt. This change of independent variable (from ¢ to F) provides a more

robust treatment of the relevant boundary conditions and the transition between them. Ac-

24—

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

cording to the Green-Ampt model, vq is given by
min (P, fe), P> Kj
Vo =
P, P < K;.

where f. is called the infiltrability (or infiltration capacity) and represents the maximum

possible infiltration rate that the soil will allow, given by

fe

K +[(Ks - K;) (F+J)/F]

Ky +(J/F) (Ks - K;).
Here, J = G (05 — 0;), and G is the capillary length scale [Smith et al., 2002], defined as

1 0
GzzﬁmK(W)dw.

The Green-Ampt parameter, G, characterizes an initially dry soil with K; < K.

For the TBC soil model used by TopoFlow, G can be computed by inserting (4) into
(8), and for the typical case where ¥4 = 0, Peckham [2010] found the following closed-
form expression for the resulting integral

Fa+1/0) '@ -1)/c]
I'(n/c)

Here I'(x) is the Gamma function and recall that ¥ 5 < 0. Since > 2 and ¢ > 3, it can be

G=-yp

shown that 0 < G < -2y . While Smith et al. [2002] (p. 71) gave a closed-form expres-
sion for G in the case of the standard Brooks-Corey model, namely G = —ygn/(n — 1),
this result for the TBC model appears to be new. It also yields the Brooks-Corey expres-
sion for G in the limit as ¢ — oo, but can give very different values for smaller values

of c. Note that while Mathematica has powerful symbolic integration capabilities and can
evaluate the G integral for several specific values of ¢ (e.g. ¢ = 1, ¢ = 3/2, ¢ = 2), it does
not provide the general expression in (9). Mathematica can also be used to check (9) by

computing the G integral numerically for arbitrary choices of ¢ and 7.

3.9 Matching Rainfall Peaks to Hydrograph Peaks with Green-Ampt

Assuming no other gains from snowmelt or baseflow, and no losses from evapora-
tion, the runoff available to generate discharge is given by R = (P — vp), the difference
between the rainfall rate and the surface infiltration rate. In the special case where the soil
is saturated at the start of a rainfall event, we clearly have K; = K, as well as 6; = 65, in

view of (1). Equation (7) then reduces to f. = K and equation (6) simplifies to
Kg, if P> K,
Vo =

P, if P < K.

25—

(6)

)

®)

€))

(10)

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

In this case, the Green-Ampt model only allows rainfall rates to generate nonzero runoff

when K < P, that is

P-Ks, if P>Kj;
R= (1)

0, if P < K.

In the more general case when K; < K, Green-Ampt predicts that the runoff rate
associated with a given rainfall peak (at any point in the basin) should be given by (see

(M)

Ry = max {pk _ (K . 5) ,o} , (12)
Fy

where C = G (05 — 0;) (Ky — K;), and F; < Fi.; are the values of the cumulative infil-
trated depth at the time a rainfall peak occurs. The fact that infiltration rates are higher at
the beginning of a rainfall event (and F' is a nondecreasing function) means that a rain-
fall peak of a given magnitude will be less strongly reflected in the basin hydrograph if

it occurs toward the beginning of a rainfall event than if it instead occurs at a later time.
This can be clearly seen in the C2 measured hydrograph, where the first and fourth rain-
fall peaks are comparable in magnitude but the first hydrograph peak is much smaller than

the third.

In addition, the total contributing area of the C2 basin is A = 4.84 [km?] and the
longest channel in the C2 basin is 2.93 [km]. Assuming a mean flow velocity of roughly
1 [m/s] in the channels, then once water reaches a channel, most water should reach the

basin outlet in less than half an hour.

At a given point in the C2 basin, runoff will not occur unless the rainfall rate, P, ex-
ceeds the infiltrability, f. = K5 + C/F, and therefore it must exceed K. It follows that in
order for the hydrograph peaks to have been generated by the corresponding rainfall peaks
(although routed to the basin outlet by the channel network), we must have Py > K, P> >
K and P3 > K. To satisfy all three inequalities, we must have K; < 9.0 X 1077 [m/s].
Note, however, that the rainfall rates were measured at one-hour intervals while the model
timesteps for both the infiltration and channel routing components were 2 seconds and the
hydrograph at the outlet was measured at a time interval of 15 minutes. The actual rainfall
peak values were likely higher (and no less than) the recorded peak values. If the range
estimate of 4.23 x 107% < K, < 1.41 x 107 [m/s] given by Rieger et al. [1972] is ac-
curate, then the instantaneous rainfall rates must have been higher than the low end of this

range. But since these higher values weren’t measured, it would appear to be necessary

26—

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

to use values of K in the model at least /0 times smaller in order to match the observed

hydrograph.

3.10 Model Results and Analysis

We use Equation (7) to guide our search for a good combination of parameters for
the watershed. K is the offset that determines which pulses in the precipitation data are
completely suppressed, since when P < K, the model indicates that all water is infil-
trated. It is important to note, then, that the sampling rate for the precipitation, which in
the case of this data set is one hour, is critical to being able to utilize a K value that re-
flects the observed value. Since the precipitation sampling rate is low, we need to utilize
a much lower K value than the reported value to preserve the peaks. Figure (9) shows
the discharge at the tracked outlet in C2 for different values of Ky when 6; = 65 so that
fe = 0. We notice that it is the second peak that is attenuated the most by an increase
in K. Noting that there is a shoulder in the observed discharge output in Figure (7) in-
dicates that the second peak is not attenuated and in fact looks to have approximately the
same amplitude as the first peak. Therefore, selecting a K value for which a 1:1 ratio
may be maintained between these two peaks is desirable; a K value above 8.0 x 1077

seems to completely suppress the second peak and is thus not desirable.

For any given K value, introducing the second term in Equation (7) by decreasing
6; will further attenuate the peaks. The amount of attenuation and which peaks are attenu-
ated most is determined by the weighting factor, G. Figure (10) illustrates how increasing
G preferentially attenuates to first peaks more than latter peaks. The first three peaks all

experience attenuation while the fourth peak is relatively unaffected.

With this understanding of parameter adjustment on modeled output, it is possible
to find an optimum combination of parameters that will yield a reasonable output volume.
Attempting to achieve the correct volume output while maintaining all the peaks results
in incorrect peak response matching with the third peak being much larger than the other
three peaks. Allowing suppression of the first two peaks and attempting to optimize the
ratio of the third and fourth peak heights as well as the total volume discharge yields the
result in Figure (11). In order to obtain this simulated output, several adjustments were
made to the input data. First, the precipitation data was resampled at 2 second intervals

(from the original 1 hour), so that instead of a single pulse of precipitation at the begin-

27—

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

666

668

ning of each hour, the precipitation was added to the model in smaller increments. This

resulted in a better overall precipitation volume estimate (within 100 m?) in comparison

to that modeled with the hour-interval precipitation (off by more than 6000 m?). Addi-

tional

ly, the default surface drag effect from the Manning n coefficient was increased by a

factor of 6. Without this drag effect, each pulse response occurs sooner and decays faster.

Figure (12) illustrates the way the model responds to a given input. It can be seen

that the model behaves like a simple integrator upon being fed an impulse. It is the amount

of cumulative precipitation during a short period of time that determines whether the

model responds to a rain event, not the number of peaks during an event. Effectively, the

precipitation event mimics a sequence of two step functions and the outputs show how the

motion of water through the landscape behaves similarly to the discharging of a capacitor

in an

integrator circuit.

Lastly, in Figure (13), we show an example of the influence of increased surface

drag and 4-peak response on the simulated output. From this example, we can see the

importance of these two effects in smoothing out the discharge curve.

A detailed, reproducible workflow of how the results in this section were obtained is

available on GitHub as an iPython notebook.

0.075

0.070

o o o o
o o o o
a G o o
S o o U

o
o
2
o

observed discharge rate (m* /s)

0.040

210 T m/s 5210 "m/s

5210 Tm/s 210 m/s

N
o

2.0

5

Q

E

1

e

o

=

7 2
Ks=8.5210 Tm/s S
o}

5

°

34

2

5

2

£

o

S

0.035
0.0

Figure 9. Effect of varying K with ; = 6, on precipitation peak response suppression. Notice that the ob-

served

4 Co

0.75 0.95
time (days after start date 2008/07/28 16:00:00)

0.5 1.0 1.5 2.0 25
time (days after start date 2008/07/28 16:00:00)

and modeled hydrographs have different y-axes.

nclusions and Recommendations

This paper has attempted to document the entire workflow of a spatial hydrologic

modeling study to the extent that it can be easily reproduced and extended by other scien-

28—

computed discharge rate (m? /s)

https://github.com/mariutzica/Paper-of-the-Future-Content/blob/master/Simulation-Results/Running%20TopoFlow%20and%20Analyzing%20Results.ipynb

655

656

657

658

659

669

670

671

672

673

674

675

676

677

678

0.075

-
o

— G=0012m

| — G=0.012m

0.070} G=00Im Ay 4 N [=001m |[¢ 35
7 — G =0.008m e n I 0.008m B
= G=0.006m Py " i 7 =0.006m o
E 0.065- - G=00um 1.2 € "l o i - G=0004m [{0-30 £
o o [| o
=) = (AL =
T 0.060f {10 g : “ L 0.25 S
& & K [T o
5 0.055 J{os & , ! 020 &
] 9 | ! 3
a = [E
S 0.050} o632 | 01573
o 3 | B
3] 2
£ 0.045 loa 3 ! 010 3
2 £ | £
i g ' S

0.040}- k\ {02 . Jo.0s

1
0.035 = . . 0.0 . . 0.00
0.0 05 1.0 15 2.0 2.5 0.15 0.35 0.55 0.75 0.95

time (days after start date 2008/07/28 16:00:00)

time (days after start date 2008/07/28 16:00:00)

Figure 10. Effect of varying G with Ky = 7.7 x 10~7 m/s and 6; = 0.01 on precipitation peak response sup-

pression. Notice that the observed and modeled hydrographs have different y-axes.

. . . . 3500 3500
0.16| Jo.16 _ ~
- @ iE, 30001 -3000 é
= 0.14f J0.14 - o e
E)
E = 2 2500} {2500 5
1 8 = £
© 0.12} 4012 ¢ & @2
° | i o
3 e 3 2000 2000 5
8 0.0 {0108 =z 5
] 2§ 15000 41500 £
S] S
3 0.08 Jo08g o o
¢ £ % 1000} {1000 ¢
9 g = 3
38 0.06| doo6 5 2 3
° S E soof {500 E
3 3
0.04F L L L 10.04 0 L L L L 0
0.0 05 1.0 15 2.0 2.5 0.0 0.5 1.0 15 2.0 2.5
time (days after start date 2008/07/28 16:00:00) time (days after start date 2008/07/28 16:00:00)
Figure 11. Best match result in terms of total volume discharge when Ky = 4.5 X 1077 m/s,0; = 0.17,

G =

1.1 m. The precipitation data was resampled for 2 second intervals using a uniform distribution, and the

drag factor due to the Manning n coefficient was multiplied by a factor of 6.

tists. In support of reproducibility, the entire TopoFlow modeling toolkit, including com-

ponents, utilities and framework is:

open source and accessible on GitHub (MIT license)
version controlled

easily installed as a Python package

citable with a DOI

extensible by adding new components

runnable with the CSDMS-WMT, EMELI and EMELI-Web frameworks

In addition, every TopoFlow model component has:

object-oriented source code that takes advantage of inheritance

20—

660

661

662

663

664

665

679

680

681

682

683

684

685

)
<)
o
o
B

40.12

ul
o
T

e
o
T
L
o
-
[S)

L
o
o
©

L
o
o
=

cumulative precipitation (mm)

N w
o o
T T

L

e

o

Y

-
o
T

computed discharge rate (m®/s)

-

< I S~ H0.02
-, -
0 ‘ ‘ ‘ ‘ 0.00
0.0 0.5 1.0 15 2.0 2.5

time (days after start date 2008/07/28 16:00:00)

Figure 12. Best match result in terms of total volume discharge when K = 4.5 X 1077 m/s, 0; =0.17, G =

1.1 m plotted against the cumulative precipitation.

0.075

°
g

0.070

L
o
o

0.065

L
o
]

0.060

L
©
IS

computed discharge rate (m? /s)

0.055

L
o
W

0.050

0.045

observed discharge rate (m? /s)

0.040 40.1
0.035 : . . - 0.0
0.0 0.5 1.0 15 2.0 2.5

time (days after start date 2008/07/28 16:00:00)

Figure 13. [Illustrative example of the effect of increased surface drag (factor of 30 vs. 6) on the curve
shape of the modeled discharge. This model result yielded a volume discharge ten times higher than observed,
but shows the features that could be captured for higher precipitation data sampling rates. Notice that the

observed and modeled hydrographs have different y-axes.

a Basic Model Interface (BMI) to support plug-and-play reuse in frameworks

- all input and output variables mapped to CSDMS Standard Names

« additional, standardized metadata at OntoSoft portal (CSDMS section)

- its own HTML help page that describes all variables and all equations used

« its own easy-to-read and edit configuration file (read at startup)

« a graphical user interface (GUI): i.e. WMT for Python & TopoFlow-IDL for IDL

- the ability to run as a web service with EMELI-Web

-30-

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

706

707

708

709

710

711

712

713

714

715

716

- the ability to save its output to standard-format NetCDF files or generic binary
grids. (These NetCDF files can be viewed with many visualization software toolk-

its, such as Vislr [2016].)

New components can easily be created by copying and then editing the Python source
code of existing components. Components of a given process type can also inherit many
capabilities from existing base classes. In addition, BMI-to-Framework-X adapters are un-
der development by the EarthCube Earth System Bridge project that will allow compo-
nents to run in several other modeling frameworks. These adapters are available in the

BMI-Forum [2016] on GitHub.

For the hydrologic modeling study, the procedure for obtaining input data was fully
described, and open-source Python scripts for preparing input data for TopoFlow were
provided. This included links to iPython notebooks that can be used to: (1) prepare input

data, (2) reproduce the model analysis and (3) recreate many of the figures.

While used mainly as a vehicle for highlighting the issue of reproducibility and best
practices, and while only tapping a small fraction of the capabilities of the TopoFlow
model toolkit, the hydrologic modeling study for the C2 watershed led to interesting re-
sults that could be pursued further in several different directions. We showed how the
features of a hydrograph resulting from a late summer storm could be interpreted using
the Green-Ampt infiltration model. However, this study also clearly illustrated how in-
sufficient temporal resolution in rainfall rate measurements suppresses the magnitudes of
rainfall rate peaks, and how this prevents the model from matching observations unless
parameters such as K, are adjusted away from observed values. In this analysis, a robust,
but lesser-known soil water retention model used by TopoFlow — known as transitional
Brooks-Corey — was also highlighted, and a new, closed-form expression for G was pro-

vided.

Acknowledgments

We would like to thank Matt Nolan, who initiated the collaboration that led to TopoFlow,
Larry Hinzman, who helped to guide and provide funding for its development, as well as
the entire Arctic hydrology team at WERC (Water and Environmental Research Center),
at the University of Alaska, Fairbanks. S. Peckham is the primary author of TopoFlow, all

versions of which are free and open-source, as well as the product RiverTools 4.0, which

31—

717 is sold commercially by Rivix, LLC. To avoid any perceived conflict of interest, this paper
718 has described workflows that do not require RiverTools. This work was partially funded

719 by NSF grants ICER 1440332 (GeoSoft), 1440333 (GeoSemantics) and PLR 1503559.

32—

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

739

740

741

742

743

744

745

746

747

Appendix A: Links to HTML Help Pages for TopoFlow Components

Each TopoFlow component has its own HTML help page on the CSDMS wiki that
includes a listing of all equations and variables used by the component, along with their
units. These pages also provide a Notes section with additional information for uses, and
a list of useful References. These help pages may also be accessed from within the CS-

DMS WMT application. Each blue section heading here is a link to the corresponding

HTML help page. Source code for each component can be found in the topoflow/components

folder of the TopoFlow Python package, with the indicated filenames. All *_base.py com-

ponents inherit from topoflow/utils/BMI_base.py.

Channel and Overland Flow Routing Components

Kinematic Wave Method. Basic method for modeling steady, uniform flow in open chan-
nels. Mass conservation equation and momentum calculation includes friction and gravity
terms only. Surface, bed and energy slope are equal.

(channels_kinematic_wave.py inherits from channels_base.py).

Diffusive Wave Method. Same as kinematic, except uses the pressure gradient that is in-
duced by a water-depth gradient in the downstream direction. Benefit: Water is able to
move across flat areas that have a bed slope of zero.

(channels_diffusive_wave.py inherits from channels_base.py).

Dynamic Wave Method. Most comprehensive method for modeling channel flow. Includes
momentum flux terms, as well as friction, gravity and pressure gradient.

(channels_dynamic_wave.py inherits from channels_base.py).

Evaporation Process Components

Priestley-Taylor Method. Empirical equation for evapo-transpiration. Useful when weather
inputs such as relative humidity and wind speed are not available.

(evap_priestley_taylor.py inherits from evap_base.py).

Energy Balance Method. Describe the component here.

(evap_energy_balance.py inherits from evap_base.py).

Infiltration Process Components

-33—

http://csdms.colorado.edu/wiki/Model_help:TopoFlow-Channels-Kinematic_Wave
http://csdms.colorado.edu/wiki/Model_help:TopoFlow-Channels-Diffusive_Wave
http://csdms.colorado.edu/wiki/Model_help:TopoFlow-Channels-Dynamic_Wave
https://csdms.colorado.edu/wiki/Model_help:TopoFlow-Evaporation-Priestley_Taylor
https://csdms.colorado.edu/wiki/Model_help:TopoFlow-Evaporation-Energy_Balance

748

749

750

751

752

753

754

755

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

Green-Ampt Method. Infiltration modeled as a wetting front that moves down into the
soil, separating saturated and dry soil with a sharp boundary. Matric suction and gravity

pull water into soil. (infil_green_ampt.py inherits from infil_base.py).

Smith-Parlange (3-parameter) Method. Potential infiltration rate is a function of effective
saturated hydraulic conductivity, effective net capillary drive and cumulative infiltration

depth. (infil_smith_parlange.py inherits from infil_base.py).

Richards Equation (1D) Method. Nonlinear partial differential equation method that rep-
resents flow in unsaturated porous media. Obtained from Darcy’s law and a continuity
requirement. Caution: computationally expensive, may not converge.

(infil_richards_1D.py inherits from infil_base.py).

Snowmelt Process Components

Degree-Day Method. Total daily melt is directly proportional to the temperature gradient
between the mean ambient temperature and the base temperature. The coefficient of pro-
portionality is dependent on season, location, snow density, and wind speed.

(snow_degree_day.py inherits from snow_base.py).

Energy Balance Method. Based on energy balance of energy absorbed and lost. Depen-
dent on properties such as ambient and dew point temperatures, wind speed, snow albedo,

rainfall, and incident solar radiation. (snow_energy_balance.py inherits from snow_base.py).

Meteorology Components

Meteorology. Meteorology variables computed using the equations given by Dingman
[2002] (Appendix E), supplemented with an optical mass formulation. Includes shortwave

and longwave radiation calculators based on celestial mechanics. (met_base.py).

Saturated Zone Components

Darcy Layers Method. Darcy’s law for movement of fluid in a porous medium. Capability
to handle multiple, shallow soil layers. Assumption: Water table has the same gradient as

the land surface. (satzone_darcy_layers.py inherits from satzone_base.py).

Additional Components

Data-HIS Component. This component lets you create a query by entering a search key-

word, bounding box, start date, stop date, etc. Once data has been downloaded from the

web service, it can either be saved to files or accessed directly by other components through

34—

https://csdms.colorado.edu/wiki/Model_help:TopoFlow-Infiltration-Green-Ampt
https://csdms.colorado.edu/wiki/Model_help:TopoFlow-Infiltration-Smith-Parlange
https://csdms.colorado.edu/wiki/Model_help:TopoFlow-Infiltration-Richards_1D
https://csdms.colorado.edu/wiki/Model_help:TopoFlow-Snowmelt-Degree-Day
https://csdms.colorado.edu/wiki/Model_help:TopoFlow-Snowmelt-Energy_Balance
http://csdms.colorado.edu/wiki/Model_help:TopoFlow-Meteorology
http://csdms.colorado.edu/wiki/Model_help:TopoFlow-Saturated_Zone-Darcy_Layers
https://csdms.colorado.edu/wiki/Model_help:TopoFlow-Data-HIS

778

779

780

781

782

783

784

785

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

the "Data" port, which has a standard CSDMS BMI interface. See Peckham and Goodall
[2013] for more information. (Note: Written for CMT. Not yet updated for use in WMT.)
(HIS _base.py).

Flow Diversions Component. TopoFlow supports three different types of flow diversions:
sources, sinks and canals. Sources are locations such as natural springs where water en-
ters the watershed at a point by some process other than those that are otherwise mod-
eled. Similarly, sinks are locations where water leaves the watershed at a point. Canals
are generally man-made reaches such as tunnels or irrigation ditches that transport water
from one point to another, typically without following the natural gradient of the terrain
that is indicated by the DEM. The upstream end is essentially a sink and the downstream

end a source. (diversions_fractions_method.py inherits from diversions_base.py).

Erode (Fluvial Landscape Evolution Model). While included in the TopoFlow Python
package, with a BMI interface and runnable with EMELI, this component is not really
part of TopoFlow. However, it could easily be modified to provide a sediment or contam-
inant transport model component for use with TopoFlow. It is a robust, fluvial landscape
evolution model (LEM). Unlike most or all other LEMs, Erode does not fill pits in the
initial DEM artificially at the start. Instead, local depressions are filled naturally by the
sediment transport process itself over time. Movies of the D8 area grid evolving over time
show what looks like avulsions during this filling process In addition, Erode includes a
robust numerical stability condition and uses adaptive time stepping for optimum perfor-

mance. (erode_d8_global.py inherits from erode_base.py).

GC2D (Valley Glacier Evolution and Icemelt). GC2D is a two-dimensional finite differ-
ence numerical model that is driven by a calculations of glacier mass balance (snow pre-
cipitation - melt rate). The model calculates ice surface elevations above a two-dimensional
terrain by solving equations for ice flux and mass conservation using explicit methods.

The original version was written in MatLab by Mark Kessler, but TopoFlow includes a
version converted to Python and provided with a BMI interface. While GC2D can sim-
ulate valley glacier evolution over time (with large time steps), when coupled to other
TopoFlow components it mainly provides meltwater to a river system.

(ice_base.py calls gc2d.py).

DEM Profile Smoother Tool. This is a pre-processing tool that can be applied to a DEM

to create a new DEM with smoother and more realistic channel slopes. Well-defined and

-35—

https://csdms.colorado.edu/wiki/Model_help:TopoFlow-Diversions
https://csdms.colorado.edu/wiki/Model_help:Erode-D8-Global
https://csdms.colorado.edu/wiki/Model_help:Gc2d
https://csdms.colorado.edu/wiki/Model_help:TopoFlow-DEM_Smoother

810 smoothly-varying slopes along channel streamlines is important when using the kinematic

811 wave method of flow routing. (smooth_dem.py).

36—

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

Appendix B: Reading and Writing Binary Grid Data Files

A binary grid is one of the most common, simple and efficient ways to store a grid
of data values in a file. Here grid refers to a 2D array of numbers associated with some
discretization of space. A binary grid stores the values in a 2D array by starting on the
left side of the top row and writing them row by row, similar to numbers in a calendar.
This is called row-major order, and the first/top row usually corresponds to the most north-
ern edge of a geographic bounding box for a region of interest. Each number in the 2D
array is encoded using a fixed number of bytes according to the JEEE [2008] standard,
using either a little-endian or big-endian byte ordering. (Macs and PCs with Intel proces-
sors use little-endian, but others may use big-endian.) Floating-point numbers are typically
stored using either 4 or 8 bytes per data value (for single or double precision), and inte-
gers are typically stored using 1, 2 or 4 bytes per data value (byte, int, long). (More bytes
are needed for a greater range of possible values.) Floating-point numbers are stored dif-
ferently than integers, and the IEEE standard also has provisions for storing some special
values such as NaN (Not a Number) and Infinity. This method of storing a 2D array of
numbers in a file is dramatically more efficient — in terms of both the required disk space
and the time to read values from a file into RAM — than text files that store each number

as a collection of ASCII characters.

A binary grid typically contains only a 2D array of numbers, although it is possible
to reserve some number of bytes at the beginning of the binary file — called a header —
for storing additional, descriptive information such as the number of rows and columns
in the 2D array. The filesize of a binary grid with no header is therefore simply: filesize
= (ncols x nrows x BPE), where ncols and nrows are the number of columns and rows
in the 2D array and BPE is the number of Bytes Per Element used to store a single nu-
merical value. Note that several items of metadata are necessary in order to interpret the
numbers in the binary file, such as the number of rows and columns, the x (east-west)
and y (north-south) dimensions of each grid cell, the geographic coordinates of the lower-
left corner of the grid and measurement units associated with the data values themselves
and the grid cell dimensions. For simple binary grids, this metadata (i.e. georeferencing
info) is often stored in a small, separate and human-readable text file that is meant to ac-
company the binary grid file, and typically called a header file. Many other file formats
for storing gridded data, such as NetCDF and GeoTIFF, bundle the data values (again as

IEEE binary numbers) as well as the metadata into a single file; these are referred to as

37—

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

self-describing file formats. An advantage of doing this is it prevents misplacing the es-

sential header file.

Many commercial software packages that act on spatial, gridded data make use of
the same simple, IEEE binary grid format, although they typically have their own type of
header file for storing the metadata. For example, GridFloat is one of the ESRI grid for-
mats, where the binary grid file has the filename extension “.flt” and the header file has
extension “hdr”. GridFloat files always have BPE = 4. (They use additional small text
files called world files and projection files for additional metadata.) Many data providers,
such as the USGS, provide the option of downloading data in GridFloat format. River-
Tools uses the same, simple binary grid files (but supports any BPE) and calls them RTG
files (RiverTools Grid), with filename extension “.rtg”. The corresponding header file with
metadata is called an RTI file (RiverTools Information), and has filename extension ““.rti”.
ENVI, a popular image-processing application is similar, but uses “.img” as the filename
extension for the binary grid file and “.hdr” as the extension for the header file. BOV

(Block of Value) files are yet another version of this common pattern.

Reading and writing binary grid files is simple in most programming languages. For
example, here are the Python/NumPy commands for writing a 2D array of values (stored

in a NumPy ndarray) from RAM to a binary grid

import numpy as np

nx = 8
ny = 4
grid = np.arange(nx * ny).reshape(ny, nx)

grid = np.float32(grid)

print type(grid)

print grid.dtype, grid.shape

new_grid_file = 'my_grid_file.rtg’

grid_unit = open(new_grid_file, ’wb’)

if (SWAP_ENDIAN): grid.byteswap(True) # (optional byte swapping)
grid.tofile(grid_unit)

grid_unit.close()

—38—

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

And here are the commands for reading values from a binary grid into a 2D array in

RAM:

import numpy as np

nx = 8

ny = 4

n_values = nx * ny

dtype = ’float32’

grid_file = 'my_grid_file.rtg’
grid_unit = open(grid_file, ’'rb’)
grid = np.fromfile(grid_unit, count=n_values, dtype=dtype)
grid = grid.reshape(ny, nx)
grid_unit.close()

if (SWAP_ENDIAN): grid.byteswap(True)
print type(grid)

print grid.dtype, grid.shape

The TopoFlow Python package contains files called rzg_files.py and rti_files.py in its utils
folder that provide APIs for working with RTG and RTI files, respectively. Note that
header files of any type are easily created by opening an existing header file of that type

in a text editor and editing the information.

-390

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

Appendix C: Description of Binary Grids Needed to Run TopoFlow

The following set of binary grids are required by the Channel Flow components in TopoFlow

(i.e. Kinematic Wave, Diffusive Wave and Dynamic Wave). Each grid name is followed
by (1) the name of the variable that it contains, (2) the measurement units and (3) the
number of Bytes Per Element (BPE), which defines the data type. While TopoFlow allows
most other variables to be specified as a single, scalar value to be used for all grid cells,
those listed here should be specified as binary grids. Appendix B describes the format of
these files and how to read and write them. Each grid should have the same dimensions

(ncols and nrows) as the DEM.

Digital Elevation Model (DEM), elevation, [m], 4-byte float or 2-byte integer.
D8 Area Grid, rotal contributing area, [kmz], 4-byte float.

D8 Slope Grid, ropographic slope, [m/m], 4-byte float

D8 Flow Grid, D8 flow direction code, [none], 1-byte integer

Channel Width Grid, bottom widths of all channels, [m], 4-byte float (For channel grid
cells, this width will be less than the grid cell size, but for hillslope grid cells it will be
the projected width of the grid cell. Channels are assumed to be prismatic with a trape-

zoidal cross-sections.)

Manning N Grid, Manning’s N parameter, [s m~1/3], 4-byte float (For channel grid cells,
typical values are between 0.025 and 0.05, and for hillslope grid cells (overland flow) a

value about 10 times larger should be used.)

—40-

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

Appendix D: Preparing D8-based, Binary Grid Input Files for TopoFlow with D8
Global

The components folder in the TopoFlow Python package contains a powerful D8
toolkit called d8_global.py, which inherits from a base class defined in d8_base.py. Like
all other TopoFlow components, this one can be configured by editing a configuration file
(this one ending in _d8_global.cfg. Note that the components folder also contains a fluvial
landscape evolution model model component called erode_d8_global.py, which inherits
from a base class defined in erode_d8_base.py. This component calls the D8 Global com-
ponent after each of its time steps to update the D8 grids after the elevation grid (DEM)
has changed due to erosion. The source code for the Erode D8 Global component there-

fore illustrates how to call the D8 Global component.

The following commands show how to use TopoFlow’s D8 toolkit to compute (1) a
D8 flow direction grid (with Jenson [1985] flow codes), (2) a D8 topographic slope grid,
and (3) a D8 total contributing area grid. All of these grids have the same dimensions as
the source DEM they are derived from. Note that TopoFlow uses two types of filename
prefix to help organize files — a site prefix is used for files that describe the study site and
therefore don’t change between model runs (e.g. the DEM), while a case prefix is used for
files that result from running the model for a particular scenario or case (e.g. response
to a particular storm). Before running this code, you should create a directory in your
home directory, such as “/Users/peckham/TF _Tests/C2_runs” and copy a DEM as a binary
grid along with an RTT header file into the new directory as well as a CFG file for the DS
Global component with extension “_d8_global.cfg”. Then cd to this directory and use it
for both in_directory and out_directory in the following. (Allowing these two directories
to be different provides maximum flexibility, e.g. several users can share data in the same
input directory but save results in their own output directory, and different components can

use different output directories.)

import topoflow

from topoflow.components import d8_global

d8 = d8_global.d8_component ()

d8.DEBUG = False

—41-

946 SILENT = False

947 REPORT = True

948

949 in_directory = ’/Users/peckham/TF_Tests/C2_runs/’

950 site_prefix = ’C2_basin’

951 filename = site_prefix + ’_d8_global.cfg’

952 cfg_file = in_directory + filename # This is the config file.
953 time = 0.0

954

955 d8.initialize(cfg_file=cfg_file, SILENT=SILENT, REPORT=REPORT)

956 d8.update(time, SILENT=SILENT, REPORT=REPORT)

957 Once the above set of D8-based grids have be computed for a given DEM, they can be

958 saved into binary grid files (see Appendix B) with the following additional commands.

959 from topoflow.utils import rtg_files

960 from topoflow.utils import rti_files

961

962 out_directory = ’/Users/peckham/TF_Tests/C2_runs/’

963 # site_prefix = 'C2_basin’

964

965 header_file = (out_directory + site_prefix + ’.rti’)

966 grid_info = rti_files.read_info(header_file, REPORT=True)

967

968 # Save D8 flow direction grid (flow codes, not aspect)

969 d8_code_file = (out_directory + site_prefix + ’'_flow.rtg’)

970 rtg_files.write_grid(d8.d8_grid, d8_code_file, grid_info, RTG_type=’"BYTE’)
o1

972 # Save D8 contributing area grid

973 d8_area_file = (out_directory + site_prefix + ’_d8-area.rtg’)

974 rtg_files.write_grid(d8.A, d8_area_file, grid_info, RTG_type='FLOAT’)
975

976 # Compute the D8 slope grid (not available in d8 object yet)

977 pIDs = d8.parent_IDs

42—

978

979

980

981

982

d8_slope = (d8.DEM - d8.DEM[pIDs]) / d8.ds

Save the D8 slope grid

d8_slope_file = (out_directory + site_prefix + ’_d8-slope.rtg’)

rtg_files.write_grid(d8_slope, d8_slope_file, grid_info, RTG_type='FLOAT’)

43—

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

Appendix E: Installing the TopoFlow Python Package and Dependencies

Step 1. Install Python 2.7 and commonly-used Python packages. One of the easiest ways
to do this is to install Anaconda, a complete, open-source Python platform. Anaconda
supports MacOS, Linux and Windows. You can download the installers from:
https:www.continuum.io/downloads. The installation includes over 100 Python pack-
ages that support scientific work. This includes all but one of the packages needed by
TopoFlow, including: NumPy, SciPy, setuptools, pip and h5py. It also includes Matplotlib,
Jupyter, Pandas, curl, wheel and many others. Anaconda also includes a package and de-
pendency manager called conda, which makes it easy to install any of 620 other Python

packages (e.g. netCDF4).

Step 2. Install the netCDF4 module. TopoFlow uses this module to write model output
to standardized netCDF files. The netCDF4 module relies on the A5py package that is in-

cluded with Anaconda.

$ conda install netCDF4

You can check whether the package was installed correctly by typing python in a terminal

window (to start a Python session) and then typing import netCDF4 at the Python prompt.

Step 3. Download the TopoFlow Python package (v. 3.5) from GitHub.

Download it from: https./github.com/peckhamsftopoflow as a zip file and unzip it.

Step 4. Install the TopoFlow Python package. There are many advantages to installing
TopoFlow as a Python package, but it is also helpful to retain the option of making changes
to the TopoFlow source code without rebuilding the package. It is therefore recommended
to install TopoFlow as an “‘editable install”. This is done by copying the entire TopoFlow
package folder (TopoFlow_3.5) someplace convenient (e.g. your home directory or Drop-
box folder). This folder contains a file called setup.py used for installation. Then, in a

terminal window, type the commands

$ cd TopoFlow_3.5

$ pip install --editable ./

44

1010 A folder with extension .egg-info will be created in the TopoFlow_3.5 folder that allows it
1011 to be recognized as a Python package. (Note: A similar but slightly different method is to

1012 use the command: python setup.py develop instead of python setup.py install .)

1013 Step 5. Perform a test run of TopoFlow with the default data set Treynor. TopoFlow al-

1014 lows you to specify different directories for model input and output files in the CFG files.
1015 The input files for the Treynor data set are in the examples/Treynor_lowa_30m folder of
1016 the TopoFlow package. However, output files are written to a directory in your home di-
1017 rectory called TF_Output/Treynor. So first, create this directory with the commands

1018 $ cd; mkdir TF_Output; mkdir TF_Output/Treynor

1019 Next, open a terminal window and type:

1020 $ python -m topoflow

1021 You can edit the EMELI provider file (with extension providers.txt) to specify different
1022 components to use for the various hydrologic processes. Each process component is con-
1023 figured with its own configuration file, or CFG file, which are text files with extension
1024 .Cfg.

1025 Step 6. Run TopoFlow with your own data sets. Acquire a DEM for your study site and

1026 create necessary input files as explained in Appendix B and C. You need a CFG file for
1027 every component you want to use in the CFG directory. You also need an outlet file (ex-
1028 tension outlets.txt and an EMELI provider file (extension providers.txt). You should start
1029 with copies from the Treynor example and edit them as needed, making sure their comp_status

1030 has been set to Enabled. All of these files have filenames that begin with the cfg_prefix,

1031 which is typically the case_prefix associated with a particular modeling scenario. To run

1032 TopoFlow for your own data set, open a terminal window and type:

1083 $ python -m topoflow --cfg_prefix PREFIX --cfg_directory DIRECTORY

1034 --driver_comp_name DRIVER

1035 With your own data set, you may need to use smaller time steps in the CFG files to achieve
1036 a numerically stable model run (i.e. that doesn’t crash). Also, you should use the same

1037 time step in the CFG files for the meteorology and infiltration components. Be aware that

45—

1038 grid stack files can be large (i.e. those ending with .rts or 2D-*.nc) and can accumulate

1039 over multiple model runs.

1040 Appendix F: How to Set up a Model Run with TopoFlow-IDL

1041 TopoFlow-IDL 1.6 is the original version of the TopoFlow model, written in Interac-
1042 tive Data Language (IDL). It is free, open-source software and has a graphical, point-and-
1043 click user interface. It also includes a set of data preparation routines that have not yet

1044 been ported to the newer, component-based version of TopoFlow written in Python/NumPy.
1045 TopoFlow-IDL requires some version of IDL (a commercial product sold by Harris Geospa-
1046 tial Solutions) in order to run. One option is to obtain the free IDL Virtual Machine [IDL

1047 VM, 2016], which is able to launch programs saved as IDL SAV files, including topoflow.sav.
1048 TopoFlow-IDL 1.6 can also be launched from within an application called RiverTools

1049 4.0, which has an embedded IDL license. RiverTools 4.0 (RT4) is a commercial soft-

1050 ware package for digital terrain and hydrographic analysis available from Rivix Software

1051 [RiverTools, 2016]. See Peckham [2009b] for more information. TopoFlow-IDL 1.6 is in-

1052 cluded with RiverTools 4.0 as an example plugin, and can be launched from the RT4 User
1053 menu. This section explains how to prepare input data for TopoFlow model runs using

1054 RiverTools 4.0 and TopoFlow-IDL 1.6.

1085 Step 1. Obtain a DEM (digital elevation model) for the basin that you wish to model.
1056 If the DEM has dimensions greater than about 500 columns and 500 rows, then it is usu-
1057 ally best to subsample the DEM (by averaging) to have dimensions in this range. Using

108 larger DEMs will result in longer model runs and may result in RTS files (RiverTools Se-
1059 quence) for which you do not have enough space on your hard drive. It is good to start

1060 with smaller DEMs and then to increase the size/resolution of your DEM for subsequent
1061 model runs if you determine that higher resolution is necessary and you have sufficient

1062 time and disk space. Tools for mosaicking, subsetting and subsampling DEMs are avail-

1063 able in hydrologic GIS software such as RiverTools 4.0.

1064 Step 2. Create a D8 flow grid, area grid, slope grid and Horton-Strahler order grid
1065 for your DEM using RiverTools 4.0 or a similar program. The flow grid should be con-
1066 verted, if necessary, to have the RiverTools flow codes (the standard ones introduced by

1067 Jenson [1985] and a data type of “byte” (1 byte per pixel). The area and slope grids should
1068 have a data type of “float” (4 bytes per pixel) and the units in the area grid should be

1069 square kilometers. The Horton-Strahler order grid should also have a data type of “byte”.

1070 Step 3. TopoFlow requires the column and row of the pixel (i.e. grid cell) or pixels

1071 in your basin for which you wish to monitor the modeled values. It also requires the area

47—

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

(in sq. km) and relief (in meters) for this pixel or pixels. One way to obtain these values
is to simultaneously use the Vector Zoom and Value Zoom tools (which are linked) that
are available in RiverTools 4.0. The Vector Zoom tool allows you to make sure that you
are selecting a pixel that lies on the main water course and not, for example, on a nearby
hillslope. The Value Zoom tool has a Select Grid option in its Options menu that lets you

determine the contributing area and relief for the selected pixel.

Step 4. Collect hydrologic parameters for the basin of interest. Frictional losses
must be parameterized for every channel in the river network and the parameters usu-
ally vary in the downstream direction. The Create — Channel Geometry Grids dialogs
in TopoFlow-IDL 1.6 allow you to create grids of “Manning’s N", bed width and bank
angle (for a trapezoidal cross-section) by parameterizing them in terms of contributing
area or Horton-Strahler order (given as grids). In these parameterizations, free parameters
should be chosen so as to reproduce “Manning’s N” or channel width values at locations

for which these are known, such as the basin outlet.

The variables mentioned in the last paragraph are needed to model the “channel pro-
cess” but you will also need parameters for every other type of hydrologic process that
you wish to model. This includes snow melt, evapotranspiration, infiltration and shallow
subsurface flow. You will need estimates for soil properties such as hydraulic conductiv-
ity and porosity in order to model the infiltration and subsurface flow processes. There is
usually considerable uncertainty associated with these soil properties, since they typically

vary spatially and can also depend on various aspects of the local geology.

Step 5. Start TopoFlow-IDL and click on the New Model Run button. The first panel
in the wizard-style interface asks you for general information regarding the run, such as
the working directory, data set prefix and model run prefix. The model run prefix allows
you to make multiple model runs, with different parameter settings, for the same DEM
data set. You can also enter comments into the Run comments text box to describe the run
and these will be saved in the specified Comment file in the working directory. A log file
is also created that contains a summary of most parameter settings and model output. This

log file contains plain text and can be viewed with any text editor.

Step 6. Click on the Next button at the bottom of the panel. The next panel lets
you choose the method that will be used to parameterize each physical process that you

will be modeling. You can turn off a process entirely by selecting None from the droplist

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

of methods. The droplist usually contains a simple method that requires just a few pa-
rameters, as well as a more complex and physically-correct method that necessarily re-
quires more input data. As an example, the Snowmelt process has the simple Degree-Day
method as well as the more rigorous Energy-Balance method. TopoFlow uses the hierar-
chy of Process, Method, Functions and Variables as a unifying model framework. Each
method may be concisely defined in terms of a set of functions that relate input variables
to output variables. TopoFlow-IDL is designed so that it is relatively simple for users to
add their own methods. However, adding a new method does require some programming

in IDL and is beyond the scope of this tutorial.

Once you have selected a method from the droplist of choices for a given physical
process, clicking on the In... button opens a dialog for entering the parameters that the se-
lected method requires. You can learn more about any selected method, its input variables
and equations by clicking on the Help button at the bottom of the dialog. TopoFlow-IDL
1.6 uses an HTML help system which requires that the help files be installed in a standard
place, such as "C:/Program Files/TopoFlow/help" on a PC running Windows, "/Applica-
tions/TopoFlow/help” on a Mac running Mac OS X, and "/ust/local/topoflow/help” for
Linux/Unix computers. Clicking on the Out... button opens a dialog for choosing which
of the modeled hydrologic variables will be saved and how they are to be saved. The two
main output options are: (1) Save the variable as a sequence of spatial grids (as a River-
Tools Sequence or RTS file), at a specified sampling rate and (2) Save the values of the
variable as a time series (in a multi-column text file) for each of the pixels that will be
monitored, at a specified sampling rate. The pixels to be monitored are specified in a sub-

sequent wizard panel.

Step 7. For this tutorial we will select the default, Uniform in space, given durations
for the Precipitation process. Click on the In... button to open the dialog for entering the
input parameters that this method requires. If you have rain gauge data (and a sufficiently
small watershed) you may enter that data into this table, taking note of the units for Rate
and Duration. You may want to do a test run with the default parameters to get a sense
of how long it will take for the model to run with your data. Note that increasing the du-
ration can result in a much larger peak discharge and a longer model run. It is unrealistic
for large rainrates to occur in a spatially uniform manner over basins larger than a rela-
tively moderate size. It is also uncommon for them to have long durations. It may also be

unrealistic to neglect some processes such as infiltration.

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

Once Rate and Duration values have been entered into this dialog’s table, you will
generally want to save them in a text file by clicking on the Save table to file button. One
convention for the name of this text file is "00_Rain_Data#.txt”, where "#" is a number
used to distinguish between multiple rainfall tables that you may want to experiment with.
The "00_" prefix ensures that all of your saved tables will sort to the beginning of your
working directory so that they are grouped together and easily located. In a future model
run, you can quickly reload this table of values by clicking on the Read table from file
button and selecting the file you just saved. We will see later in this tutorial that other
parameter tables in TopoFlow can also be saved in this way. Several sample data sets are
available for learning to use TopoFlow (e.g. Treynor, Small and Plane) and you can reload

sample parameter tables for them in this manner.

Step 8. For this tutorial we will select the default, Kinematic Wave, Manning method
for the important Channel flow process. Click on the In... button to open the dialog for
entering the input parameters that this method requires. This method parameterizes the
downstream variation in channel parameters in terms of Horton-Strahler order. Since the
flow grid effectively "channelizes" the entire DEM, including the hillslopes, orders 1 and 2
will most likely correspond to the hillslope pixels while the higher orders will correspond
to channel pixels. However, if the pixel sizes for your subsampled DEM are larger than
the hillslope scale, then it is possible that hillslopes are not resolved at all by your DEM
and flow grid. How you set these parameters will depend on this distinction. If hillslope
pixels are resolved by your DEM’s pixel size (or grid spacing), then you should generally
treat the order 1 and order 2 pixels as hillslope pixels and set their Manning’s N and Bed
width values accordingly. Overland flow on hillslopes tends to follow a Manning- like
friction law, but with a "Manning’s N" value that is around 0.30 instead of the typical
value for open channels of about 0.03. The Bed width for a hillslope pixel should be set
to the entire width of the pixel, since frictional loss of momentum will then occur over
the entire surface of the pixel. Bank angles have no meaning for hillslope pixels, but for
channel pixels can be set to a value that defines an appropriate trapezoidal channel cross-
section. Once values have been entered into this dialog’s table, you will generally want to
save them in a text file by clicking on the Save table to file button. One convention for the
filename of this text file is "00_Channel_Data#.txt”, where "#” is a number used to distin-
guish between multiple tables that you may want to experiment with. Recall from Step 7

that precipitation parameters were previously saved in file called "00_Rain_Data.txt”.

-50-

1170

171

1172

1173

1174

1175

1176

177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

"Manning’s N" parameters definitely have an effect on the resulting hydrograph, and
can cause multiple peaks in a small basin’s hydrograph to be either distinct or merged to-
gether. Tables of Manning’s N values for typical channel types may be found in books
on open channel flow. A typical, middle-range value for channels is 0.03. Note that the
logarithmic law of the wall and Manning’s formula are two different methods for param-
eterizing frictional loss of momentum but they agree quite closely as long as the relative
roughness (water depth over typically roughness length scale) is in the range of 100 to

10000.

When you are finished entering values into this dialog, click on the OK button at
the bottom of the dialog to accept and save the new settings. Note that if any of the re-
quired grid files (indicated toward the bottom of the dialog) are missing, a warning mes-
sage will be issued. The "Timestep" at the bottom of the channel process method dialog is
the timestep that controls the entire model, even though some of the other hydrologic pro-
cesses may only be computed/updated according to their own, larger timestep. A Courant
condition can be used to choose a timestep that matches your DEM’s pixel size so as to
ensure numerical stability. This condition dictates that the maximum distance travelled by
water anywhere in the basin in one timestep v,,4,x At must be less than one pixel width,
Ax. If all pixels have the same fixed width, Ax, then we require At < (Ax/v;,qx) for sta-
bility. The timestep, At, is typically reduced by an additional "factor of safety” of 2 or
more. For DEMs with fixed-angle pixels the pixel size varies with latitude but the same
principle applies. In the current version, TopoFlow automatically estimates an optimal
timestep and uses it as the default in the Timestep text box. It is still possible, however,

that the model run will require an even smaller timestep for numerical stability.

Step 9. Now click on the Out... button for the Channel flow process. This opens a
dialog that lets you choose which of the modeled variables are to be saved and how they
are to be saved. You will usually want to at least save the Discharge grid and the Dis-
charge values at your monitored pixels. It is a good idea to use the default filenames as a
convention. Both the Grids to save and Values to save subsections of this dialog have their
own sampling timestep. You may need to experiment with different timesteps to strike a
balance between (1) ensuring that important details are resolved and (2) keeping the out-
put file sizes from being larger than necessary. Note, however, that both of these sampling
timesteps must be greater than the channel process timestep, and they should usually be

many times larger (e.g. 60 times larger). Note that the units of the sampling timesteps in

-51-

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

this dialog are minutes, while the units of the channel process timestep is specified in sec-

onds.

Step 10. You will need to repeat the basic procedure described in Steps 7, 8 and 9
to set the parameters for all of the other physical processes that you wish to model. Note
that there must be a runoft-generating process like Precipitation, Snowmelt, etc. in order

for the model to operate.

Step 11. Once you have finished setting the parameters for all of the physical pro-
cesses you wish to model, including both input and output variables, you can save them
all in a special text file with the File — Save Input Vars option. The next time you start
TopoFlow-IDL you can then reload all of these settings by selecting this same text file

with the File — Load Input Vars option.

Step 12. Click on the Next button at the bottom of thePhysical Process wizard panel
to advance to the panel labeled Info for monitored basins. This is where you enter the val-
ues that you collected in Step 3. Once you have entered these values, you will generally
want to save them for later use with the "Save table to file" button. One convention is
to save them to a file called "00_Basin_Data.txt". Recall from Steps 7 and 8 that pre-
cipitation parameters and channel flow parameters were previously saved in files called
"00_Rain_Data.txt" and "00_Channel_Data.txt". At the bottom of this wizard panel, there
is a check box labeled "Check mass balance for basin 1?". If this option is checked, then
you must specify an RTM (RiverTools mask) file that defines the set of grid cells that lie
in the basin upstream of the first monitored grid cell in the list above. This option allows
TopoFlow to compute a detailed mass-balance check which will be printed in the Output
Log Window at the end of the model run. If you have RiverTools, you can create an RTM

file for a basin with the Extract — Mask — Subbasin Mask tool.

Step 13. Click on the Next button at the bottom of the wizard panel to advance
to the final panel of the New Model Run wizard. At the top of this dialog you will see a
droplist labeled Stopping criterion. There are currently 3 different options in this droplist.
The default is especially useful for modeling the hydrologic response due to a storm event
and saves you from trying to guess how long it will take for the hydrograph to drop to a
specified value. This method also works for hydrographs with multiple peaks. The model
stops when a value equal to P% of the highest value encountered so far is reached. The

default is 5 percent. You can change this value by clicking on the Options button. As with

52—

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

the In... and Out... buttons, you will get a different dialog when you click on this button

depending on which Stopping criterion you have selected.

Step 14. You can use the Back button at the bottom of the wizard panels to go back
and check or change any of the parameters that you entered previously. You can also get
an estimate of the total space that will be required to save any output files you specified
by clicking on the Get Outfile Size button at the bottom of the dialog. If there are mes-
sages in the Output Log Window from a previous run that you would like to delete, you

can do this by clicking on the Clear Window button.

Step 15. When you are ready to start the model, click on the Start Model Run button
at the bottom of the last wizard panel. Output messages will be displayed in the Output
log window while the model is running. The hydrograph for the first pixel in your list of
monitored pixels will be displayed dynamically in the small window on the left-hand side.
You can stop a model run at any time by pressing any key on your keyboard during the
run. In most cases, TopoFlow-IDL should stop within 2 seconds of pressing a key and all

output files should be closed properly.

Step 16. When a model run is finished, you will most likely want to plot some of
the results. The Plot — Function dialog can be used to create a simple plot of numbers in
a multi-column text file such as the hydrograph for the monitored pixels, which has the
filename extension "_OUTQ.txt”. Similarly, the Plot — RTS File option can be used to
display a grid sequence (stored as an RTS file) as an animation. The Plot — RTS to MPG
option can be used to create an MPEG file from a selected RTS file if you have a valid

IDL license with the MPEG option enabled.

If you have access to RiverTools 4.0, you can use the Display — Function and Dis-
play — Grid Sequence dialogs to display your hydrographs and grid sequences. Each of
these dialogs draws on the functionality of RiverTools 4.0 to offer numerous additional
features, some of which are located in the Options and Tools menus of the display win-
dows. The Time Profile and Animated Profile tools are particularly useful and you also

have the option to save animations as movies in MP4 or AVI format.

—-53—

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

References

BMI-Forum (2016), Basic Model Interface (BMI) Forum on GitHub, https://github.
com/bmi - forum.

Bolton, W. R. (2006), Dynamic modeling of the hydrologic processes in areas of discon-
tinuous permafrost, Ph.D. thesis, University of Alaska, Fairbanks, Dept. of Civil Engi-
neering, 163 pp.

Bolton, W. R., L. D. Hinzman, and K. Yoshikawa (2000), Stream flow studies in a wa-
tershed underlain by discontinuous permafrost, in Water Resources in Extreme Environ-
ments, Proceedings, edited by D. L. Kane, pp. 31-36, American Water Resources Asso-
ciation, Anchorage, AK.

Bolton, W. R., L. D. Hinzman, and K. Yoshikawa (2004), Water balance dynamics of
three small catchments in a sub-arctic boreal forest, in Northern Research Basins Wa-
ter Balance Workshop Proceedings, vol. 290, edited by D. L. Kane and D. Yang, pp.
213-223, IAHS Publication, Victoria, Canada.

Brooks, R., and A. Corey (1964), Hydraulic properties of porous media, Hydrology Pa-
pers, Colorado State University, Fort Collins, Colorado.

Coe, J. A., D. A. Kinner, and J. W. Godt (2008), Initiation conditions for debris flows
generated by runoff at Chalk Cliffs, central Colorado, Geomorphology, 96, 270-297,
doi:10.1016/j.geomorph.2007.03.017, http://dx.doi.org/10.1016/j.geomorph.
2007.03.017.

CSDMS-BMI (2016), The Basic Model Interface (BMI), Online documentation, CSDMS,
http://bmi-python.readthedocs.io/en/latest/.

CSDMS-WMT (2016), Web Modeling Tool (WMT), https://csdms.colorado.edu/
wmt/.

Dingman, S. L. (2002), Physical Hydrology, 2nd edition, Prentice Hall.

Edwards, P. N. (2010), A Vast Machine: Computer Models, Climate Data, and the Politics
of Global Warming, MIT Press, Cambridge, MA.

Edwards, P. N., M. S. Mayernick, A. L. Batcheller, G. C. Bowker, and C. L. Borgman
(2011), Science friction: Data, metadata, and collaboration, Social Studies of Sci-
ence, 41, 667, doi:10.1177/0306312711413314, http://dx.doi.org/10.1177/
0306312711413314.

54—

https://github.com/bmi-forum
https://github.com/bmi-forum
https://github.com/bmi-forum
http://dx.doi.org/10.1016/j.geomorph.2007.03.017
http://dx.doi.org/10.1016/j.geomorph.2007.03.017
http://dx.doi.org/10.1016/j.geomorph.2007.03.017
http://bmi-python.readthedocs.io/en/latest/
https://csdms.colorado.edu/wmt/
https://csdms.colorado.edu/wmt/
https://csdms.colorado.edu/wmt/
http://dx.doi.org/10.1177/0306312711413314
http://dx.doi.org/10.1177/0306312711413314
http://dx.doi.org/10.1177/0306312711413314

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

EMELI-Web (2016), Experimental Modeling Environment for Linking and Interoperabil-
ity, Web service version, http://ecgs.ncsa.illinois.edu/emeli-web/.

Garijo, D., P. Alper, K. Belhajjame, O. Corcho, Y. Gil, and C. Goble (2013), Common
motifs in scientific workflows: An empirical analysis, Future Generation Computer Sys-
tems, 36, 338-351, doi:10.1016/j.future.2013.09.018, http://dx.doi.org/10.1016/
j.future.2013.09.018.

Green, W. H., and G. A. Ampt (1911), Studies on soil physics: Part I. The flow of air and
water through soils, Journal of Agricultural Science, 4(1), 1-24.

GSN (2017), Geoscience Standard Names (GSN) ontology, http://www.
geostandardnames.org.

Hannon, M. T., J. P. M. Syvitski, and A. J. Kettner (2008), Hydrologic modeling of a
tropical river delta by applying remote sensing data: The Niger Delta and its distribu-
taries, American Geophysical Union, Fall Meeting Abstract, #H53B-1050.

Henderson, F. M. (1966), Open Channel Flow, Macmillan Publishing Co., New York.

Hinzman, L. D., D. L. K. DL, C. Benson, and K. Everett (1996), Chapter 6: En-
ergy balance and hydrological processes in an Arctic watershed, in Landscape
Function and Disturbance in Arctic Tundra, Ecological Studies, vol. 20, edited by
J. Reynolds and J. Tenhunen, chap. 6, pp. 131-154, Springer-Verlag, Berlin, doi:10.
1007/978-3-662-01145-4_6, http://dx.doi.org/10.1007/978-3-662-01145-4_6.

Hinzman, L. D., D. Goering, and D. L. Kane (1998), A distributed thermal model for cal-
culating temperature profiles and depth of thaw in permafrost regions, Journal of Geo-
physical Research — Atmospheres, 103(D22), 28,975-28,991.

Hutton, C., T. Wagener, J. Freer, D. Han, C. Duffy, and B. Arheimer (2016), Most com-
putational hydrology is not reproducible, so is it really science?, Water Resources Re-
search, 52, 7548-7555, doi:doi:10.1002/2016 WR019285, http://dx.doi.org/10.
1002/2016WRO19285.

IDL VM (2016), Interactive Data Language (IDL) Virtual Machine, http://www.
harrisgeospatial.com/Support/HelpArticlesDetail/TabId/219/ArtMID/900/
ArticleID/12395/The-IDL-Virtual-Machine.aspx.

IEEE (2008), IEEE 754-2008, Institute of Electrical and Electronics Engineers, https:
//standards.ieee.org/findstds/standard/754-2008.html.

Jenson, S. K. (1985), Automated derivation of hydrologic basin characteristics from digital

elevation model data, in Proceedings of the Digital Representations of Spatial Knowl-

—-55—

http://ecgs.ncsa.illinois.edu/emeli-web/
http://dx.doi.org/10.1016/j.future.2013.09.018
http://dx.doi.org/10.1016/j.future.2013.09.018
http://dx.doi.org/10.1016/j.future.2013.09.018
http://www.geostandardnames.org
http://www.geostandardnames.org
http://www.geostandardnames.org
http://dx.doi.org/10.1007/978-3-662-01145-4_6
http://dx.doi.org/10.1002/2016WR019285
http://dx.doi.org/10.1002/2016WR019285
http://dx.doi.org/10.1002/2016WR019285
http://www.harrisgeospatial.com/Support/HelpArticlesDetail/TabId/219/ArtMID/900/ArticleID/12395/The-IDL-Virtual-Machine.aspx
http://www.harrisgeospatial.com/Support/HelpArticlesDetail/TabId/219/ArtMID/900/ArticleID/12395/The-IDL-Virtual-Machine.aspx
http://www.harrisgeospatial.com/Support/HelpArticlesDetail/TabId/219/ArtMID/900/ArticleID/12395/The-IDL-Virtual-Machine.aspx
http://www.harrisgeospatial.com/Support/HelpArticlesDetail/TabId/219/ArtMID/900/ArticleID/12395/The-IDL-Virtual-Machine.aspx
http://www.harrisgeospatial.com/Support/HelpArticlesDetail/TabId/219/ArtMID/900/ArticleID/12395/The-IDL-Virtual-Machine.aspx
https://standards.ieee.org/findstds/standard/754-2008.html
https://standards.ieee.org/findstds/standard/754-2008.html
https://standards.ieee.org/findstds/standard/754-2008.html

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

edge, pp. 301-310, Auto-Carto VII, Washington, D.C., http://mapcontext.com/
autocarto/proceedings/auto-carto-7/.

Jiang, P., M. Elag, P. Kumar, S. D. Peckham, L. Marini, and L. Rui (2017), A service-
oriented architecture for coupling web service models using the basic model interface
(bmi), Environmental Modeling and Software (in press).

Liljedahl, A. (2008), Master’s thesis, Master’s thesis, University of Alaska, Fairbanks.

OntoSoft-CSDMS (2016), OntoSoft Software Repository for CSDMS, http://csdms.
ontosoft.org/#list.

Peckham, S. D. (2009a), Chapter 25: Geomorphometry and spatial hydrologic modelling,
in Geomorphometry: Concepts, Software, Applications, Developments in Soil Science,
vol. 33, edited by T. Hengl and H. I. Reuter, pp. 579-602, Elsevier, http://dx.doi.
org/10.1016/S0166-2481(08)00025-1.

Peckham, S. D. (2009b), Chapter 18: Geomorphometry in RiverTools, in Geomorphom-
etry: Concepts, Software, Applications, Developments in Soil Science, vol. 33, edited
by T. Hengl and H. I. Reuter, pp. 411-430, Elsevier, http://dx.doi.org/10.1016/
S0166-2481(08)00018-4.

Peckham, S. D. (2010), TopoFlow Soil Properties Page, https://csdms.colorado.
edu/wiki/Model_help:TopoFlow-Soil_Properties_Page.

Peckham, S. D. (2014a), The CSDMS Standard Names: Cross-domain naming conven-
tions for describing process models, data sets and their associated variables, in Pro-
ceedings of the 7th Intl. Congress on Env. Modelling and Software, edited by D. P. Ames,
N. W. T. Quinn, and A. E. Rizzoli, p. Paper 12, International Environmental Modelling
and Software Society iIEMSs), San Diego, CA, http://scholarsarchive.byu.edu/
iemssconference/2014/Stream-A/12/.

Peckham, S. D. (2014b), EMELI 1.0: An experimental smart modeling framework for
automatic coupling of self-describing models, in Proceedings of HIC 2014: 11th Inter-
national Conference on Hydroinformatics, CUNY Academic Works, New York, NY,
http://academicworks.cuny.edu/cc_conf_hic/464/.

Peckham, S. D. (2016), TopoFlow Python package on GitHub, open-source, https://
github.com/peckhams/topoflow.

Peckham, S. D., and J. L. Goodall (2013), Driving plug-and-play models with data from
web-services: A demonstration of interoperability between CSDMS and CUAHSI-HIS,

Computers & Geosciences, special issue: Modeling for Environmental Change, 53, 154—

—56-

http://mapcontext.com/autocarto/proceedings/auto-carto-7/
http://mapcontext.com/autocarto/proceedings/auto-carto-7/
http://mapcontext.com/autocarto/proceedings/auto-carto-7/
http://csdms.ontosoft.org/#list
http://csdms.ontosoft.org/#list
http://csdms.ontosoft.org/#list
http://dx.doi.org/10.1016/S0166-2481(08)00025-1
http://dx.doi.org/10.1016/S0166-2481(08)00025-1
http://dx.doi.org/10.1016/S0166-2481(08)00025-1
http://dx.doi.org/10.1016/S0166-2481(08)00018-4
http://dx.doi.org/10.1016/S0166-2481(08)00018-4
http://dx.doi.org/10.1016/S0166-2481(08)00018-4
https://csdms.colorado.edu/wiki/Model_help:TopoFlow-Soil_Properties_Page
https://csdms.colorado.edu/wiki/Model_help:TopoFlow-Soil_Properties_Page
https://csdms.colorado.edu/wiki/Model_help:TopoFlow-Soil_Properties_Page
http://scholarsarchive.byu.edu/iemssconference/2014/Stream-A/12/
http://scholarsarchive.byu.edu/iemssconference/2014/Stream-A/12/
http://scholarsarchive.byu.edu/iemssconference/2014/Stream-A/12/
http://academicworks.cuny.edu/cc_conf_hic/464/
https://github.com/peckhams/topoflow
https://github.com/peckhams/topoflow
https://github.com/peckhams/topoflow

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

161, doi:10.1016/j.cageo.2012.04.019, http://dx.doi.org/10.1016/j.cageo.2012.
04.019.

Peckham, S. D., E. W. H. Hutton, and B. Norris (2013), A component-based approach
to integrated modeling in the geosciences: The design of CSDMS, Computers & Geo-
sciences, special issue: Modeling for Environmental Change, 53, 3—12, http://dx.
doi.org/10.1016/j.cageo.2012.04.002.

Pohl, S., P. Marsh, C. Onclin, and M. Russell (2009), The summer hydrology of a small
upland tundra thaw lake: implications to lake drainage, Hydrological Processes, 23,
2536-2546, Special Issue: Thematic set of subsurface, surface and atmospheric pro-
cesses in cold regions hydrology.

Rieger, S., C. E. Furbush, D. B. Schoephorster, H. Summerfield Jr., and L. C. Geiger
(1972), Soils of the Caribou-Poker Creeks Research Watershed, Interior Alaska, Tech.
Rep. 236, U.S. Army Corps of Engineers, Cold Regions Research and Engineering Lab
(CRREL), Hanover, New Hampshire, prepared by the U.S. Department of Agriculture,
Soil Conservation Service.

RiverTools (2016), RiverTools Home Page, Rivix Software LLC, http://www.
rivertools.com.

Schramm, 1. (2005), Hydrologic modeling of an arctic watershed, Alaska, Ph.D. thesis,
University of Potsdam, Germany.

Smith, R. E. (1990), Analysis of infiltration through a two-layer soil profile, Soil Science
Society of America Journal, 54(5), 1219-1227.

Smith, R. E., K. R. J. Smettem, P. Broadbridge, and D. A. Woolhiser (2002), Infiltration
Theory for Hydrologic Applications, Water Resources Monograph 15, American Geo-
physical Union, doi:http://dx.doi.org/10.1029/WM105.

Vardi, M. Y. (2010), Science has only two legs, Communications of the ACM (Association
of Computing Machinery), 53(9), 5, doi:10.1145/1810891.1810892.

Vislt (2016), Visit visualization software, Lawrence Livermore National Laboratory,
https://wci.llnl.gov/simulation/computer-codes/visit

Zhang, Z., D. L. Kane, and L. D. Hinzman (2000), Development and application of a
spatially-distributed arctic hydrological and thermal process model (ARHYTHM), Hy-
drological Processes, 14(6), 1017-1044, doi:10.1002/(SICI)1099-1085(20000430)14:
6<1017::AID-HYP982>3.0.CO;2-G.

57—

http://dx.doi.org/10.1016/j.cageo.2012.04.019
http://dx.doi.org/10.1016/j.cageo.2012.04.019
http://dx.doi.org/10.1016/j.cageo.2012.04.019
http://dx.doi.org/10.1016/j.cageo.2012.04.002
http://dx.doi.org/10.1016/j.cageo.2012.04.002
http://dx.doi.org/10.1016/j.cageo.2012.04.002
http://www.rivertools.com
http://www.rivertools.com
http://www.rivertools.com
https://wci.llnl.gov/simulation/computer-codes/visit

