本数据集包括新安江模型运行所需的黑河流域野牛沟气象站气象数据(降水和水面蒸发)、径流数据及通过模拟退火优化算法参数优化后的预测数据。
主要数据内容为:
1)气象数据:1990-1996年共7年的逐日的气象数据(降水和水面蒸发)
2)径流数据
3)预测数据:通过模拟退火优化算法参数优化后的预测数据
| 采集时间 | 1990/01/01 - 1996/12/31 |
|---|---|
| 采集地点 | 黑河流域上游 |
| 数据量 | 786.9 KiB |
| 数据格式 | txt |
| 坐标系 | WGS84 |
| 投影 | +proj=longlat +datum=WGS84 +no_defs |
本数据集是收集的PRMS模型取样数据,并在HOME(Heihe river basin Open Modeling Environment)建模框架下模拟运行。
仪器自动观测,人工统计数据。
数据集通过严格的人工审核控制质量
本作品采用
知识共享署名
4.0 国际许可协议进行许可。
| # | 标题 | 文件大小 |
|---|---|---|
| 1 | _ncdc_meta_.json | 3.4 KiB |
| 2 | xinanjiang.zip | 786.9 KiB |
| # | 时间 | 姓名 | 用途 |
|---|---|---|---|
| 1 | 2025/12/03 20:52 | 靳*营 |
Paper title:An automatic hydrological service chain generation method by integrating LLM and embedding model
Paper abstract:Hydrological models are essential for water resources management and soil and water conservation, yet traditional models are often locally deployed and limited in complex hydrological processes. Hydrological service chains can address these limitations, but existing automatic generation methods rely on formalized requirement expressions, lacking natural language interaction and thus offering insufficient support for ambiguous requirements. This study proposes an automatic hydrological service chain generation method that integrates a large language model (LLM) and an embedding model to transform natural language requirements into hydrological analysis results. Aiming at the diversity of natural language description of requirements, structured requirement templates are designed for automatic parsing of requirements using a LLM. To further address potential generation errors caused by LLM hallucinations, the embedding model maps both parsed requirements and candidate services into a unified vector space, with optimal processing services or composite services identified via vector similarity computation. Data services are then selected based on processing service or composite service constraints, and the complete service chain is executed through a service chain execution engine. An experiment and two case studies demonstrate the effectiveness of the proposed method in automating hydrological service chain generation, significantly enhancing the automation of hydrological analysis.
Paper type:research paper
该数据用于论文的案例分析部分
|
| 2 | 2025/08/26 22:14 | 郑*琪 |
作为训练模型的数据集,测试模型的提出是否可行
|
| 3 | 2025/08/04 17:55 | 曹* |
用于新安江模型学习和实验,做水资源量模拟和洪水预报等相关研究
|
| 4 | 2025/04/02 18:38 | Ji***Li |
提出了一种新的新安江参数率定方法,想使用该数据集进行模型验证
|
| 5 | 2025/03/02 00:26 | 赫*旦 |
进行学术研究,学习新安江模型的机理以及实现代码编程,提高自身素养
|
| 6 | 2025/02/24 21:30 | 赵*帅 |
尝试使用新安江模型对数据进行运行,练习使用新安江模型
|
| 7 | 2025/02/19 05:34 | 舒*康 |
论文题目:基于土壤植被大气连续体的流域水文模拟和应用研究
数据在研究中的作用:水文模拟
论文类型:博士论文
导师姓名:张建云
|
| 8 | 2025/01/08 23:16 | 邓*峰 |
用于验证自己写的新安江模型代码的精准性,
|
| 9 | 2024/06/05 22:02 | 魏* |
参加竞赛,需要使用学习新安江,下载示例数据,进一步学习新安江模型
|
| 10 | 2024/03/15 21:16 | 刘* |
洪涝灾害风险评估,数据用于水文模拟,论文类型为期刊论文
|
© 中国科学院西北生态环境资源研究院 2005- 备案号:陇ICP备2021001824号-21
兰州市东岗西路320号, 730000, 电话: 0931-4967592,0931-4967596

