Crop phenology provides essential information for monitoring and modeling land surface phenology dynamics and crop management and production. Most previous studies mainly investigated crop phenology at the site scale; however, monitoring and modeling land surface phenology dynamics at a large scale need high-resolution spatially explicit information on crop phenology dynamics. In this study, we produced a 1 km grid crop phenological dataset for three main crops from 2000 to 2015 based on Global Land Surface Satellite (GLASS) leaf area index (LAI) products, called ChinaCropPhen1km. First, we compared three common smoothing methods and chose the most suitable one for different crops and regions. Then, we developed an optimal filter-based phenology detection (OFP) approach which combined both the inflection- and threshold-based methods and detected the key phenological stages of three staple crops at 1 km spatial resolution across China. Finally, we established a high-resolution gridded-phenology product for three staple crops in China during 2000–2015. Compared with the intensive phenological observations from the agricultural meteorological stations (AMSs) of the China Meteorological Administration (CMA), the dataset had high accuracy, with errors of the retrieved phenological date being less than 10 d, and represented the spatiotemporal patterns of the observed phenological dynamics at the site scale fairly well. The well-validated dataset can be applied for many purposes, including improving agricultural-system or earth-system modeling over a large area.
| collect time | 2000/01/01 - 2015/12/31 |
|---|---|
| collect place | China |
| data size | 9.4 GiB |
| data format | tif |
| Coordinate system |
An improved MODIS-based LAI dataset (GLASS LAI) from 2000 to 2015 was from Liang et al. (2013; http://glass-product.bnu.edu.cn/?pid=3&c=1, last access: January 2020). The GLASS LAI product was generated with general regression neural networks (GRNNs) trained by the fused LAI from MODIS and Carbon cYcle and Change in Land Observational Products from Ensemble of Satellites (CYCLOPES) LAI products and the reprocessed MODIS reflectance of the Benchmark Land Multisite Analysis and Intercomparison of Products (BELMANIP) sites during the period 2001–2003 (Liang et al., 2013). By computing the root-mean-square error (RMSE) and determination coefficients (R2) between several global LAI products and the high-resolution LAI reference map, it could be shown that the accuracy of the GLASS LAI (RMSE=0.78; R2=0.81) was fairly good compared to that of the MODIS LAI product (MOD15) and Geoland2 BioPar version 1 (GEOV1; Xiao et al., 2016). Moreover, the intercomparison indicated that the GLASS LAI (8 d composites of 1 km spatial resolution) was more temporally continuous and spatially complete than the other LAI products (Xiao et al., 2014, 2016). It has been applied to vegetation monitoring and crop model assimilation (Xiao et al., 2014; Chen et al., 2018a).
In addition, the cultivated-land layer derived from the 1 km National Land Cover Dataset (NLCD) of China was used as cropland masks. Specifically, we detected the key phenological dates for dryland crops (i.e., maize and wheat) and paddy rice, which were restricted on the dryland and paddy field layer derived from the NLCD, respectively. NLCD was provided by the Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences (http://www.resdc.cn/Default.aspx, last access: January 2020), which also included several epochs of land use datasets, i.e., 2000, 2005, 2010 and 2015 (Liu et al., 2005, 2014).
The data processes are as follows: (1) data preprocessing, (2) selecting the cropland sample grid to determine the suitable smoothing method, (3) determining the optimal filter-based phenology detection (OFP) approach and (4) generating the ChinaCropPhen1km dataset.
The data quality is good.
| # | number | name | type |
| 1 | 41977405 | National Natural Science Foundation of China |
This work is licensed under a
Creative
Commons Attribution 4.0 International License.
| # | title | file size |
|---|---|---|
| 1 | 8313530.zip | 9.4 GiB |
| # | category | title | author | year |
|---|---|---|---|---|
| 1 | paper | ChinaCropPhen1km: a high-resolution crop phenological dataset for three staple crops in China during 2000--2015 based on leaf area index (LAI) products | Y,Luo,Z,Zhang,Y,Chen,Z,Li,F,Tao | 2020 |
GLASS LAI 1 kilometer China's three major staple crops crop phenology information phenological detection method based on optimal filtering (OFP) environmental science
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
©Copyright 2005-. Northwest Institute of Eco-Environment and Resources, CAS.
Donggang West Road 320, Lanzhou, Gansu, China (730000)

